电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 直接证明之-反证法课件 苏教版选修1-2 课件VIP免费

高中数学 直接证明之-反证法课件 苏教版选修1-2 课件_第1页
高中数学 直接证明之-反证法课件 苏教版选修1-2 课件_第2页
高中数学 直接证明之-反证法课件 苏教版选修1-2 课件_第3页
2.2.2反证法一般地,利用已知条件和某些已经学过的定义、定理、公理等,经过一系列的推理、论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。特点:“由因导果”复习经过证明的结论一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.特点:执果索因.用框图表示分析法1QP23PP12PP得到一个明显成立的结论…复习思考?A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。则C必定是在撒谎,为什么?分析:假设C没有撒谎,则C真.-----那么A假且B假;由A假,知B真.这与B假矛盾.那么假设C没有撒谎不成立;则C必定是在撒谎.反证法:(命题的否定)假设命题结论的反面成立,经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。反证法的思维方法:正难则反反证法的基本步骤:(1)假设命题结论不成立,即假设结论的反面成-------立;(2)从这个假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,从而肯定命题的结------论正确归缪矛盾:(1)与已知条件矛盾;(2)与已有公理、定理、定义矛盾;(3)自相矛盾。应用反证法的情形:(1)直接证明困难;(2)需分成很多类进行讨论.(3)结论为“至少”、“至多”、“有无穷多个”---类命题;(4)结论为“唯一”类命题;例1:用反证法证明:如果a>b>0,那么a>b证:假设a>b不成立,则a≤b若a=b,则a=b,与已知a>b矛盾,若ab矛盾,故假设不成立,结论a>b成立。例2已知a≠0,证明x的方程ax=b有且只有一个根。证:假设方程ax+b=0(a≠0)至少存在两个根,1212不妨设其中的两根分别为x,x且x≠x12则ax=b,ax=b12∴ax=ax12∴ax-ax=012∴a(x-x)=01212∵x≠x,x-x≠0∴a=0与已知a≠0矛盾,故假设不成立,结论成立。P例3:证明:圆的两条不全是直径的相交弦不能互相平分.已知:在⊙O中,弦AB、CD相交于P,且AB、CD不全是直径求证:AB、CD不能互相平分。ABCDO例4求证:是无理数。2证:假设2是有理数,m则存在互质的整数m,n使得2=,n∴m=2n22∴m=2n2∴m是偶数,从而m必是偶数,故设m=2k(k∈N)2222从而有4k=2n,即n=2k2∴n也是偶数,这与m,n互质矛盾!所以假设不成立,2是有理数成立。练习:在一个三角形的三个内角中,至少有两个锐角。例5、若一个正整数的平方是偶数,则这个数也是偶数。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

远洋启航书店的最新文档

远洋启航书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部