xyo3.3.2简单的线性规划问题课时1•引例:0012416482yxyxyx求z=2x+3y的最大值,使得x,y满足下列约束条件如图中的阴影部分Oxyy=3x=4x+2y=822,,3333zzyxkb表示的一族平行线相关概念yx4843o把求最大值或求最小值的的函数称为目标函数,因为它是关于变量x、y的一次解析式,又称线性目标函数。满足线性约束的解(x,y)叫做可行解。在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题一组关于变量x、y的一次不等式,称为线性约束条件。由所有可行解组成的集合叫做可行域。使目标函数取得最大值或最小值的可行解叫做这个问题的最优解。可行域可行解最优解例1、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?食物/kg碳水化合物/kg蛋白质/kg脂肪/kgA0.1050.070.14B0.1050.140.07分析:将已知数据列成表格解:设每天食用xkg食物A,ykg食物B,总成本为z,则0.1050.100.0750.070.140.060.140.070.0600xyxyxyxy++目标函数为:z=28x+21y作出二元一次不等式组所表示的平面区域,即可行域7757146147600xyxyxyxyxyo5/75/76/73/73/76/77757146147600xyxyxyxy把目标函数z=28x+21y变形为xyo5/75/76/73/73/76/74321zyx它表示斜率为随z变化的一组平行直线系34是直线在y轴上的截距,当截距最小时,z的值最小。21zM如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小。M点是两条直线的交点,解方程组6714577yxyx得M点的坐标为:7471yx所以zmin=28x+21y=16由此可知,每天食用食物A为143g,食物B约571g,能够满足日常饮食要求,又使花费最低,最低成本为16元。例2、在上一节例3中,各截得这两种钢板多少张可得所需A,B,C三种规格成品,且使所用钢板张数最少?解:设需要截第一种钢板x张,第二种钢板y张,则.0,0,273,182,152yxyxyxyxx+2y=18277.515180xy2x+y=15x+3y=27C(4,8)yN∈xN∈用图形表示以上限制条件,得下图的平面区域(阴影部分):目标函数:z=x+y例7、一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润?解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:xyo0y0x6615y18x10y4++x解:设生产甲种肥料x车皮、乙种肥料y车皮,能够产生利润Z万元。目标函数为Z=x+0.5y,可行域如图:把Z=x+0.5y变形为y=-2x+2z,它表示斜率为-2,在y轴上的截距为2z的一组直线系。xyo由图可以看出,当直线经过可行域上的点M时,截距2z最大,即z最大。故生产甲种、乙种肥料各2车皮,能够产生最大利润,最大利润为3万元。M容易求得M点的坐标为(2,2),则Zmin=3解线性规划问题的步骤:(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(3)求:通过解方程组求出最优解;(4)答:作出答案。(1)画:画出线性约束条件所表示的可行域;巩固练习1.设满足约束条件021xxyxy则32zxy的最大值是2.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元,甲、乙产品都需要在A、B两种设备上加工,在每台A、B上加工1件甲所需工时分别为1h、2h,A、B两种设备每月有效使用台数分别为400h和500h。如何安排生产可使收入最大?设每月...