MAC1AB1B1C1DDN高二数学期末复习材料(十二):综合练习1、若函数且,则的值为.2、若,,且为纯虚数,则实数.3、“”是“为钝角”的条件.4、已知a,b为异面直线,直线c∥a,则直线c与b的位置关系是.5、如果曲线处的切线互相垂直,则x0的值为.6、当a为任意实数时,直线恒过定点P,则过点P的抛物线的标准方程是.7、曲线和在它们交点处的两条切线与轴所围成的三角形面积是.8、设,,,,,,某学生猜测,老师回答正确,则.9、已知椭圆的左右焦点分别为,离心率为,若椭圆上存在点,使得,则该离心率的取值范围是.10、已知A、B为抛物线x2=2py(p>0)上两点,直线过焦点在准线上的射影分别为,则下列说法中正确的为___________(填序号).①轴上恒存在一点,使得;②;③存在实数使得;④若线段中点在在准线上的射影为,有.11、在正方体中,分别是棱上异于端点的点,(1)证明不可能是直角三角形;(2)如果分别是棱的中点:(ⅰ)求证:平面平面;(ⅱ)若在棱上有一点,使得,求与的比值.12、设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知.(1)若为区间上的“凸函数”,求实数的值;(2)若当实数满足时,函数在上总为“凸函数”,求的最大值.1