1/7中考数学中的几何最值问题在近几年各地中考中,几何最值问题屡屡受到命题者关注,此类问题不仅涉及平面几何的基础知识,还涉及几何图形的性质、平面直角坐标系、方程与不等式、函数知识等。因此一批立意新颖、构造精巧、考点突出的新题、活题脱颖而出。这类试题较好地考查了同学们的几何探究、推理能力的要求及数学思想方法的运用。本节课以近几年的全国各地的中考题为例加以讲解,希对同学们的备考有所帮助。1.(2009年潍坊市)已知边长为a的正三角形ABC,两顶点AB、分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是____________.解:取AB的中点D,连结OD、CD、OC,则OD=a21,且CD⊥AB,,∴CD=a23,当C,D,O三点共线时,OC=OD+CD,否则OC<OD+CD,∴OC长的最大值是a21+a23。点评本题求一条线段的最大值,关键是抓住斜边长度确定,斜边上的中线长也确定,利用三角形两边之和大于第三边,寻找突破口从而求解。2.(2008年兰州)如图,在ABC△中,1086ABACBC,,,经过点C且与边AB相切的动圆与CBCA,分别相交于点EF,,则线段EF长度的最小值是()A.42B.4.75C.5D.4.8解:易知⊿ABC是直角三角形,所以EF是圆的直径,设切点是D,因为直径是圆中最长的弦,所以EF≥CD,作CH⊥AB于点H,则CD≥CH,所以有EF≥CH,即EF长度的最小值是CH,利用面积方法易得CH=4.8。所以线段EF长度的最小值是4.8,故选D。点评本题求一条线段的最小值,通过转化后利用垂线段最短求解。3.(2009年四川达州)在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值)。解:B、Q在直线AC同侧,动点P只能在AC上运动。⊿PBQ中,B、Q为定点,故BQ长度不变,要使⊿PBQ周长最小,应使动点P到两定点B、Q之和PB+PQ最小。直线AC是正方形的对称轴,点Q关于对角线AC的对称点Q′一定落在边CD上,如图所示,当B、P、Q′共线时PB+PQ=PB+PQ′=BQ′=5取最小值,则△PBQ周长的最小值为5+1。点评本题有一定的难度,△PBQ周长的最小值问题转为求一个动点到两个定点的距离和的最小值问题,通过作对称点的方法,当三点共线时,两条线段和△PBQ周长的最小。4.(2010年苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2B.1C.222D.22解:当AD为⊙C的切线,切点为D时,OE最长,BE最短,此时⊿ABE面积最小,易证⊿AOE∽⊿ADC,所以ADAOCDOE,可求得OE=22,于是BE=2-22,从而△ABE面积的最小值是222221222。选D。点评本题求面积的最小值,由于三角形的高确定,因此只要求底(即一条线段)的最小值即可,根据圆的性质,易知AD处于极端位置(切线)时,所求三角形的面积最小。2/75.(2010年天津市)在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3OA,4OB,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且2EF,当四边形CDEF的周长最小时,求点E、F的坐标.温馨提示如图可以作点D关于x轴的对称点D′,连接CD′与x轴交于点E,△CDE的周长是最小的。这样,你只需要求出OE的长,就可以确定点E的坐标了。解:(1)如图,作点D关于x轴的对称点D,连接CD与x轴交于点E,连接DE.若在边OA上任取点E(与点E不重合),连接CE、DE、DE.由DECEDECECDDECEDECE,可知△CDE的周长最小. 在矩形OACB中,3OA,4OB,D为OB的中点,∴3BC,2DODO,6DB. OE∥BC,∴Rt△DOE∽Rt△DBC,有OEDOBCDB.∴2316DOBCOEDB.∴点E的坐标为(1,0).(2)如图,作点D关于x轴的对称点D,在CB边上截取2CG,连接DG与x轴交于点E,在EA上截取2EF. GC∥EF,GCEF,∴四边形GEFC为平行四边形,有GECF.又DC、EF的长为定值,∴此时得到的点E、F使四边形CDEF的周长最小. OE∥BC,∴Rt△DOE∽Rt△DBG,有OEDOBGDB.∴()21163DOBGDOBCCGOEDBDB.∴17233OFOEEF.∴点E的坐标为(13,0),点F的坐标为(73,0)点评本题(1)有...