学习必备欢迎下载三角形与四边形如图5,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于F,点E是AB的中点,连结EF.(1)求证:EF∥BC.(2)若四边形BDFE的面积为6,求△ABD的面积.(1)证明:CFACB平分,∴12.⋯⋯⋯⋯⋯⋯⋯⋯1分又 DCAC,∴CF是△ACD的中线,∴点F是AD的中点.⋯⋯⋯⋯2分 点E是AB的中点,∴EF∥BD,即EF∥BC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)解:由(1)知,EF∥BD,∴△AEF∽△ABD,∴2()AEFABDSAESAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分又 12AEAB,6AEFABDABDBDFESSSS四边形,⋯⋯⋯⋯⋯⋯5分∴261()2ABDABDSS,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴8ABDS,∴ABD的面积为8.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分21FEDCBA学习必备欢迎下载如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F。请你猜想DE与DF的大小有什么关系?并证明你的猜想。解:DE=DF证明如下:连结BD 四边形ABCD是菱形∴∠CBD=∠ABD(菱形的对角线平分一组对角) DF⊥BC,DE⊥AB∴DF=DE(角平分线上的点到角两边的距离相等)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC到E,使CE=AD.(1)写出图中所有与△DCE全等的三角形,并选择其中一对说明全等的理由;(5分)(2)探究当等腰梯形ABCD的高DF是多少时,对角线AC与BD互相垂直?请回答并说明理由.(5分)解:解:(1)△CDA≌△DCE,△BAD≌△DCE;···················································2分①△CDA≌△DCE的理由是: AD∥BC,∴∠CDA=∠DCE.·······················3分又 DA=CE,CD=DC,·························4分∴△CDA≌△DCE.·······························5分或②△BAD≌△DCE的理由是: AD∥BC,∴∠CDA=∠DCE.···················································································3分FEDCBA(第23题图)FEDCBAG学习必备欢迎下载又 四边形ABCD是等腰梯形,∴∠BAD=∠CDA,∴∠BAD=∠DCE.··················································································4分又 AB=CD,AD=CE,∴△BAD≌△DCE.···············································································5分(2)当等腰梯形ABCD的高DF=3时,对角线AC与BD互相垂直.···············6分理由是:设AC与BD的交点为点G, 四边形ABCD是等腰梯形,∴AC=DB.又 AD=CE,AD∥BC,∴四边形ACED是平行四边形,····························································7分∴AC=DE,AC∥DE.∴DB=DE.·····················································································8分则BF=FE,又 BE=BC+CE=BC+AD=4+2=6,∴BF=FE=3.···················································································9分 DF=3,∴∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,∴∠BDE=∠BDF+∠EDF=90°,又 AC∥DE∴∠BGC=∠BDE=90°,即AC⊥BD.···················································10分(说明:由DF=BF=FE得∠BDE=90°,同样给满分.)如图8,在ABCD中,E,F分别为边AB,CD的中点,连接E、BF、BD.(1)求证:ADECBF△≌△.(5分)(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论...