中考数学专题探究-----面积问题面积问题在中考中占有很重要的地位,一般情况下,计算一些基本图形的面积,可以直接运用图形的面积公式,对于一些不规则的图形面积的计算,可以对图形进行转化,这类问题虽然解题方法比较灵活多样,但难度一般不太大。但是,在中考压轴题中,有关面积的问题常常以动态的方式出现,经常与函数知识联系起来,有时还需要分类讨论。因此,对考生要求较高,在解题时,要注意分清其中的变量和不变量,并把运动的过程转化成静止的状态,做到动静结合,以静求动。考点一:面积的函数关系式问题典型例题:1、(2009年湖南衡阳)如图12,直线4xy与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为)40aa(,正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(00,-x+4>0);则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;(2)根据题意得:S四边形OCMD=MC·MD=(-x+4)·x=-x2+4x=-(x-2)2+4∴四边形OCMD的面积是关于点M的横坐标x(0