1高二(理)数学参考答案一、选择题每题4分题号12345678答案AAABCBDC二、填空题每题4分[]9.032yx10.9011.312.④13.112,()三、解答题14.(Ⅰ)解:axayl2121:1,xyl52:2且21ll,则15221a..................2分所以51a.....................................4分(Ⅱ)解:02052yxyx得到12yx.......................5分设直线l的方程:)2(1xky021kykx312152kkk..........................7分43k....................................8分即直线l的方程:0534yx............................9分或2x.....................................10分15.(Ⅰ)证明:∵AD平面ABE,BCAD//,所以BC平面ABE,[.2且AE平面ABE,则BCAE..........................2分又BF平面ACE,AE平面ACE,则AEBF,且BBCBF,所以AE平面BCE..............................4分(Ⅱ)证明:∵BF平面ACE,则BFCE,且BEBC,所以F为CE的中点,................................5分且G为AC的中点,则AEFG//,......................6分AE平面BFD,GF平面BFD,所以//AE平面BFD.................................8分(Ⅲ)解:因为,//FGAEAE平面BCE,则FG平面BCE,且,121AEFG[]221CFCEBF,12221CFBS,................................10分[]BCFGBGFCVV................................11分=FGSCFB31=31................................12分16.如图:以A为原点建立空间直角坐标系,得3)0,1,0(),1,2,1(),2,2,0(),1,0,1(),2,0,0(),,0,0,0(11ECBCBA(Ⅰ)证明:易得),1,1,1(),1,0,1(11CECB..........1分则011CECB,...........................2分所以.11CECB..........................3分(Ⅱ)解:)1,2,1(1CB设平面CEB1的法向量),,,(zyxm则001CEmCBm,即002zyxzyx.........................4分可得一个法向量)1,2,3(m.........................5分,11CECB且,111CBCC可得11CB平面1CEC,故)1,0,1(11CB为平面1CEC的一个法向量..........................6分111111CBmCBmCBmCOS.........................7分7722144........................8分从而721sin11CBm........................9分(Ⅲ)解:).1,1,1(),0,1,0(1ECAE设),,,(1ECEM10,[]有4),1,(EMAEAM,........................10分取)2,0,0(AB为平面11AADD的一个法向量.设为直线AM与平面11AADD所成的角,则ABAMcossin.......................11分=ABAMABAM=112222则112222=62解得31.......................12分所以2AM.......................13分17.(Ⅰ)证明:因为侧面PCD底面ABCD,BC交线,CD则BC平面PCD,....................2分所以PDBC;....................3分(Ⅱ)如图,因为侧面PCD底面ABCD,取DC中点,O因为2PDPC,则PO交线,CD所以PO底面,ABCD........4分以ODOC,所在直线分别为y轴和z轴建立空间直角坐标)0,1,2(A,)0,1,2(B,)0,1,0(C,)0,1,0(D,)3,0,0(P,)0,1,1(N,5易得:)3,1,1(PN,)23,21,2(BM............6分设异面直线BM与PN所成角为,则BMPNBMPNcos..................8分535523212...................9分所以异面直线BM与PN所成角的余弦值为53;(Ⅲ)解:因为)23,21,2(),0,2,2(BMBD.设平面MBD的一个法向量为),,,(zyxm由00BMmBDm,得023212022zyxyx,取,3,1,1zyx所以)3,1,1(m,....................11分又)0,0,1(DN,所以点N到平面MBD的距离mDNmd...................12分.55..................13分