电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

备战高考母题精解精析专题10 圆锥曲线 文试卷VIP免费

备战高考母题精解精析专题10 圆锥曲线 文试卷_第1页
备战高考母题精解精析专题10 圆锥曲线 文试卷_第2页
备战高考母题精解精析专题10 圆锥曲线 文试卷_第3页
备战2013高考数学(文)6年高考母题精解精析专题10圆锥曲线一、选择题1.【2012高考新课标文4】设12FF是椭圆的左、右焦点,为直线32ax上一点,是底角为30的等腰三角形,则的离心率为()2.【2012高考新课标文10】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()3.【2012高考山东文11】已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为(A)(B)21633xy(C)(D)4.【2012高考全国文5】椭圆的中心在原点,焦距为,一条准线为,则该椭圆的方程为(A)(B)(C)(D)5.【2012高考全国文10】已知、为双曲线的左、右焦点,点在上,,则(A)(B)(C)(D)【答案】C【解析】双曲线的方程为,所以,因为|PF1|=|2PF2|,所以点P在双曲线的右支上,则有|PF1|-|PF2|=2a=,所以解得|PF2|=,|PF1|=,所以根据余弦定理得,选C.6.【2012高考浙江文8】如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3B.2C.D.7.【2012高考四川文9】已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则()A、B、C、D、8.【2012高考四川文11】方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A、28条B、32条C、36条D、48条【答案】B9.【2012高考上海文16】对于常数、,“”是“方程的曲线是椭圆”的()A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件【答案】B.【解析】 >0,∴或。方程=1表示的曲线是椭圆,则一定有故“>0”是“方程=1表示的是椭圆”的必要不充分条件。10.【2012高考江西文8】椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为A.B.C.D.11.【2012高考湖南文6】已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1B.-=1C.-=1D.-=1[w~#ww.zz&st^ep.com@]12.【2102高考福建文5】已知双曲线22xa-25y=1的右焦点为(3,0),则该双曲线的离心率等于A31414B324C32D43【答案】C.【解析】根据焦点坐标知,由双曲线的简单几何性质知,所以,因此.故选C.二、填空题13.【2012高考四川文15】椭圆为定值,且的的左焦点为,直线与椭圆相交于点、,的周长的最大值是12,则该椭圆的离心率是______。14.【2012高考辽宁文15】已知双曲线x2y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则∣PF1∣+∣PF2∣的值为___________________.【答案】【解析】由双曲线的方程可知15.【2012高考江苏8】(5分)在平面直角坐标系中,若双曲线的离心率为,则的值为▲.16.【2012高考陕西文14】右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.17.【2012高考重庆文14】设为直线与双曲线左支的交点,是左焦点,垂直于轴,则双曲线的离心率【答案】【解析】由得,又垂直于轴,所以,即离心率为。18.【2012高考安徽文14】过抛物线的焦点的直线交该抛物线于两点,若,则=______。19.【2012高考天津文科11】已知双曲线与双曲线有相同的渐近线,且的右焦点为,则三、解答题20.(本小题满分14分)已知椭圆(a>b>0),点P(,)在椭圆上。(I)求椭圆的离心率。(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|求直线的斜率的值。【答案】21.【2012高考江苏19】(16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中为椭圆的离心率.(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P.(i)若,求直线的斜率;(ii)求证:是定值.22.【2012高考安徽文20】(本小题满分13分)如图,分别是椭圆:+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.(Ⅰ)求椭圆的离心率;(Ⅱ)已知△的面积为40,求a,b的值.【解析】23.【2012高考广东文20】(本小题满分14分)在平面直角坐标系中,已知椭圆:()的左焦点为,且点在上.(1)求椭圆的方程;24.【2102高...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

最新文章

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部