安徽省蚌埠市2019届高三第一次教学质量检查考试数学(理)试题一、选择题(本大题共12小题)1.已知全集2,3,,集合,集合,则()A.B.C.D.3,【答案】B【解析】【分析】由补集的定义求得得,进而由交集的定义可得结果.【详解】因为全集,集合,则,又因为集合,所以;故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.2.已知复数z满足,其中i是虚数单位,则复数z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而得答案.【详解】,,则在复平面内对应的点的坐标为,位于第一象限.故选A.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为A.4B.5C.8D.9【答案】B【解析】【分析】由几何概型中的随机模拟试验可得:,将正方形面积代入运算即可.【详解】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B.【点睛】本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验,列出未知面积与已知面积之间的方程求解.4.已知双曲线的渐近线方程为,一个焦点,则该双曲线的虚轴长为A.1B.C.2D.【答案】C【解析】【分析】根据焦点可得,结合渐近线方程中的关系;联立可得、的值,从而可得答案.【详解】因为双曲线的渐近线方程为,一个焦点,所以,,联立、可得:,,,该双曲线的虚轴长2,故选C.【点睛】本题考查双曲线的简单几何性质,涉及双曲线的焦点、渐近线方程,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.5.已知实数,,,则a,b,c的大小关系是A.B.C.D.【答案】D【解析】【分析】根据的范围和指数函数性质,估算出的范围,从而可判断大小.【详解】解:,,,,.故选:D.【点睛】本题主要考查了对数函数与指数函数性质的应用,属于中档题.6.设向量,,且,则m等于A.1B.2C.3D.4【答案】B【解析】【分析】分别求出关于的表达式,解方程即可得结果.【详解】由题意,可知:,.,.,,解得:.故选B.【点睛】本题主要考查向量线性运算的坐标表示以及向量的模计算,意在考查对基础知识的掌握与应用,属基础题.7.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则A.B.C.D.【答案】A【解析】【分析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解.【详解】解:将的图象所有点的横坐标缩短到原来的倍得到,再把所得图象向左平移个单位,得到,故选:A.【点睛】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题.8.某电商为某次活动设计了“和谐”、“爱国”、“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也不同员工甲按规定依次点击了4次,直到第4次才获奖则他获得奖次的不同情形种数为A.9B.12C.18D.24【答案】C【解析】【分析】根据题意,分析可得甲第4次获得的红包有3种情况,进而可得前三次获得的红包为其余的2种,...