电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

八年级数学等腰三角形教案VIP免费

八年级数学等腰三角形教案_第1页
八年级数学等腰三角形教案_第2页
八年级数学等腰三角形教案_第3页
中考网www.zhongkao.com等腰三角形(一)教学目标:1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教具准备:圆规、三角尺、教学过程一.提出问题,创设情境1.①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?2.满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.二.导入新课1.同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.思考:(1).等腰三角形是轴对称图形吗?请找出它的对称轴.(2).等腰三角形的两底角有什么关系?(3).顶角的平分线所在的直线是等腰三角形的对称轴吗?(4).底边上中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?2.等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.(它的两个底角有什么关系?)3.等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.(这中考网www.zhongkao.com中考网www.zhongkao.com个结论由学生共同探究得出的)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰△的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).4.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.DCAB三.随堂练习课本P51练习1、2、3.四.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.五.课后作业课本P56习题12.31、3、4、题.等腰三角形(二)教学目标探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.教学重点:等腰三角形的判定定理及其应用.探索等腰三角形的判定定理.教学难点:等腰三角形的判定定理及其应用.教学过程一.提出问题,创设情境1.等腰三角形有些什么性质呢?2.满足了什么样的条件就能说一个三角形是等腰三角形呢?二.导入新课1.思考:如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?中考网www.zhongkao.comAB0中考网www.zhongkao.com2.在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?[例1]已知:在△ABC中,∠B=∠C(如图).求证:AB=AC.证明:作∠BAC的平分线AD.在△BAD和△CAD中∴△BAD≌△CAD(AAS).∴AB=AC.3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).4.[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).求证:AB=AC.证明: AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又 ∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).练习:已知:如图,AD∥BC,BD平分∠ABC.求证:AB=AD.证明: AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).又 BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD(等角对等边).[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?(1)EDCAB(2)EDCBMN分析:这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.三.随堂练习中考网www.zhongkao.com21DC...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部