2017年黑龙江省大庆市高考数学仿真试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|1≤3x≤81},B={x|log2(x2﹣x)>1},则A∩B=()A.(2,4]B.[2,4]C.(﹣∞,0)∪[0,4]D.(﹣∞,﹣1)∪[0,4]2.已知复数z1=2+6i,z2=﹣2i,若z1,z2在复平面内对应的点分别为A,B,线段AB的中点C对应的复数为z,则|z|=()A.B.5C.2D.23.命题∀m∈[0,1],则的否定形式是()A.∀m∈[0,1],则B.∃m∈[0,1],则C.∃m∈(﹣∞,0)∪(1,+∞),则D.∃m∈[0,1],则4.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a6=()A.2B.0C.﹣2D.﹣45.二项式(x+1)n(n∈N*)的展开式中x2项的系数为15,则n=()A.4B.5C.6D.76.AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是()A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI指数值的中位数是90D.从4日到9日,空气质量越来越好7.高三某班15名学生一次模拟考试成绩用茎叶图表示如图1,执行图2所示的程序框图,若输入的ai(i=1,2,…,15)分别为这15名学生的考试成绩,则输出的结果为()A.6B.7C.8D.98.已知A={(x,y)|x2+y2≤π2},B是曲线y=sinx与x轴围成的封闭区域,若向区域A内随机投入一点M,则点M落入区域B的概率为()A.B.C.D.9.设点P(x,y)在不等式组所表示的平面区域内,则的取值范围为()A.(2,5)B.[2,5)C.(2,5]D.[2,5]10.已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得出这个几何体的内切球半径是()A.B.C.D.11.如图所示点F是抛物线y2=8x的焦点,点A、B分别在抛物线y2=8x及圆x2+y2﹣4x﹣12=0的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围是()A.(6,10)B.(8,12)C.[6,8]D.[8,12]12.已知函数f(x)=,若存在x1、x2、…xn满足==…==,则x1+x2+…+xn的值为()A.4B.6C.8D.10二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=x2+x﹣b+(a,b为正实数)只有一个零点,则+的最小值为.14.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为.15.把3男2女共5名新生分配给甲、乙两个班,每个班分配的新生不少于2名,且甲班至少分配1名女生,则不同的分配方案种数为.16.已知函数,点O为坐标原点,点,向量=(0,1),θn是向量与的夹角,则使得恒成立的实数t的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对的边分别为.(1)求角C;(2)若△ABC的中线CD的长为1,求△ABC的面积的最大值.18.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:非体育迷体育迷合计男女1055合计将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X分布列,期望E(X)和方差D(X).附:P(K2≥k)0.050.01k3.8416.63519.如图,在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)求直线PD与平面AQC所成角的正弦值.20.已知F1,F2分别是椭圆C:=1(a>b>0)的左,右焦点,D,E分别是椭圆C的上顶点和右顶点,且S=,离心率e=(Ⅰ)求椭圆C的方程;(Ⅱ)...