第二次月考数学理试题【新课标Ⅱ版】一、选择题(每小题5分,共60分)1.已知全集()A.B.C.D.2、下列四个函数中,与y=x表示同一函数的是()A.y=B.y=C.y=D.y=3、函数y=的定义域是()A.(3,+)B.[3,+)C.(4,+)D.[4,+)4、若函数的图象的顶点在第四象限,则函数的图象是()5、已知a,b是实数,则“”是“”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件6、已知函数是上的奇函数.当时,,则的值是()。A.3B.-3C.-1D.17.已知函数,则A.4B.C.-4D-8.若曲线在点处的切线方程是,则A.B.C.D.9、下列结论正确命题的序号是___________A.C.10.如果设奇函数在上为增函数,且,则不等式的解集为()A.B.C.D.11.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为A.B.C.D.12、已知是以为周期的偶函数,且时,,则当时,等于()二、填空题(每小题5分,共20分)13若一次函数有一个零点2,那么函数的零点是.14、若f(x)是幂函数,且满足=3,则=______.15.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为.16.f(x)=x(x-c)2在x=2处有极大值,则常数c的值为________.三、解答题(共70分)17、(10分)已知f(x)是二次函数,其图像过点(0,1),且求f(x)。18、(12分)已知的图象经过点,且在处的切线方程是(1)求的解析式;(2)求的单调递增区间。19、(12分)设集合A={x|x2<4},B={x|1<}.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.20、(12分)如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=的部分图象.分别求出函数f(x)和g(x)的解析式;21(本小题满分12)已知函数(1)求的最小正周期;(2)求的单调递增区间.22.12分)已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②61,即m>2时,g(x)max=g=-m,故只需-m≤1,解得m≥.又∴m>2,∴m≥.综上可知,m的取值范围是m≥.21、解:(1)所以递增区间为(2)切点为,则的图象经过点