3C2016年淮南市高三数学一模理科试题答案一、选择题1.A2.B3.D4.A.5.D6.C7.B8.D9.C10.C11.B12.B二、填空题13.(-4,-2)14.4x+3y+21=0或x=-315.16.217.解:在△ABC中,根据==,得AB=·sinC=sinC=2sinC,同理BC=2sinA,因此AB+BC=2sinC+2sinA..........................................4分=2sinC+2sin(π-C)=,.........................................................................8分因此AB+BC的最大值为.........................................................................................10分取最大值时,,因而△ABC是等边三角形............................................................12分18.解(1)由题意得,5a3·a1=(2a2+2)2,.....................................................2分d2-3d-4=0,解得d=-1或d=4,........................................................................4分所以=-n+11或=4n+6............................................................................5分(2)设数列{}前n项和为,因为d<0,所以d=-1,=-n+11,....................................................................6分则n≤11时,|a1|+|a2|+|a3|+…+||==-n2+n;.................8分n≥12时,|a1|+|a2|+…+|a11|+|a12|+…+||=a1+a2+…+a11-a12-…-=S11-(-S11)=-+2S11=n2-n+110....................................................................10分综上所述,|a1|+|a2|+…+||=..........................12分19.(1)证明:在中,,,.............................................................................................................2分又且、AC是面内的两条相交直线,平面,..............................................................................................4分又平面,平面平面;...............................................................................5分(2)在中,,,又且AB、AC是yzxABCA1B1C1面ABC内的两条相交直线,面ABC,......................................................7分因而,可建立如图所示的坐标系:则B(0,0,0),A(12,0,0),C(12,5,0),,由得,...............................................................8分取平面的一个法向量,设平面BCC1B1的一个法向量,由得取,则...........................................................................10分,设的大小为,则,.二面角的正切值的大小为.................................................12分20.解:(1),,................................................2分设F(0,c),则,,又a2-b2=c2=3∴∴E的方程是..................................................................................4分(2)设的方程为,设,由得,...........................................6分>0,,...........10分令,则,而当且仅当,即时等号成立,此时.∴当的面积最大时,求的方程为,即..........................................................................................12分21.解:(1)当时,..................................................................2分令,则.时>0;时<0.,即(只在处取等号)的单减区间是;........................................................................4分(2),令,则且函数在处的切线为,由(1)知,时,在上单减且,,合题意........................................................................................6分当>时,数形结合知,在上仍单减且,,合题意........................................................................................8分当0<<时,数形结合知,>1,使得.即时>0,在上单增,>,不合题意..........................................10分当≤0时,数形结合知,时,>0,在上单增,>,不合题意.综上,若时恒有,则的取值范围是.............................