山西省吕梁市2020届高三数学10月阶段性测试试题理(含解析)一、选择题(本大题共12小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是最符合题目要求的1.已知集合,则()A.B.C.D.【答案】A【解析】【分析】求解出的解集作为集合,求解出的解集作为集合,然后再求解的结果.【详解】因为,所以,所以;因为,所以,所以;所以.故选:A.【点睛】本题考查集合的交集运算,难度较易.注意解对数不等式时,对数的真数要大于零.2.已知,则()A.B.C.D.【答案】B【解析】【分析】根据指数函数的单调性判断的大小,再根据对数函数的单调性判断的正负,即可确定之间的大小关系.【详解】因为在上递增,所以,即;又因为在上递增,所以;又因为,,所以,故选:B.【点睛】利用指、对数函数的单调性比较数的大小时,经常会用到“中间值比较法”:对数式经常会与作比较,指数式经常会与作比较.3.已知函数,则是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】分别考虑是否是的充分条件或者必要条件,然后结合前面得到的结论确定是的何种条件.【详解】当时,,所以是成立的充分条件;当时,或,所以是成立的不必要条件,所以是成立的充分不必要条件,故选:A.【点睛】充分、必要条件对应的推出情况(常见两种):(1)若是的充分不必要条件:;(2)若是的必要不充分条件:.4.我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有27枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为()A.2B.3C.4D.5【答案】B【解析】【分析】根据提示三分法,考虑将硬币分为组,然后将有问题的一组再分为组,再将其中有问题的一组分为,此时每组仅为枚硬币,即可分析出哪一个是假币.【详解】第一步将27枚硬币分为三组,每组9枚,取两组分别放于天平左右两侧测量,若天平平衡,则假币在第三组中;若天平不平衡,假币在较轻的那一组中;第二步把较轻的9枚金币再分成三组,每组3枚,任取2组,分别放于天平左右两侧测量,若天平平衡,则假币在第三组,若天平不平衡则假币在较轻的一组;第三步再将假币所在的一组分成三组,每组1枚,取其中两组放于天平左右两侧测量若天平平衡,则假币是剩下的一个;若天平不平衡,则较轻的盘中所放的为假币.因此,一定能找到假币最少需使用3次天平.故选:B.【点睛】本题考查类比推理思想的应用,难度一般.处理该类问题的关键是找到题干中的提示信息,由此入手会方便很多.5.已知,则()A.B.C.D.【答案】D【解析】【分析】利用诱导公式先将变形为,然后再利用二倍角公式结合已知条件计算的值即可.【详解】因为所以,故选:D.【点睛】本题考查利用诱导公式、二倍角余弦公式求值,难度一般.常见的二倍角公式有:.6.已知函数有三个零点,则()A.4B.6C.8D.12【答案】C【解析】【分析】作出图象,将有三个零点转化为方程有个根的问题,根据计算出的值,根据韦达定理计算出的值,由此计算出的值.【详解】画出与的图象如下图所示:且,由有三个零点,当时方程在区间内有两个相等的实根,所以得或,若时,,舍去;若时,满足条件,所以;当时,的两根之积为,所以,所以,故选:C.【点睛】在函数与方程的综合应用中,例如的零点,即为方程的根,同时也是图象与图象交点的横坐标,注意此三者之间的转化.7.已知关于x的方程没有正数根,使为真命题的实数a的取值范围是()A.B.C.D.【答案】C【解析】【分析】先考虑均为真命题时的范围,再考虑为假的情况时的范围,对此范围在实数集内取补集即为为真命题时的范围.【详解】若为真命题,则;若为真命题,则或,所以,若为假命题,所以假假,所以或,解得:,所以当为真命题时,,故选:C.【点睛】本题考查根据含逻辑联结词的复合命题的真假求解参数范围,难度一般.对于复合命题的判断要注意是否...