电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数的单调性 例题解析 新课标 人教版 试题VIP免费

函数的单调性 例题解析 新课标 人教版 试题_第1页
函数的单调性 例题解析 新课标 人教版 试题_第2页
函数的单调性 例题解析 新课标 人教版 试题_第3页
函数的单调性例题解析【例1】求下列函数的增区间与减区间(1)y=|x2+2x-3|(2)y(3)y==xxxxx2221123||解(1)令f(x)=x2+2x-3=(x+1)2-4.先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x.当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2.∴增区间是(-∞,0)和(0,1)减区间是[1,2)和(2,+∞)(3)解:由-x2-2x+3≥0,得-3≤x≤1.令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1]上是在x∈[-1,1]上是.而=在≥上是增函数.yu0u∴函数y的增区间是[-3,-1],减区间是[-1,1].【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范围.解当a=0时,f(x)=x在区间[1,+∞)上是增函数.当≠时,对称轴=,若>时,由>≤,得<≤.a0xa0a03a10a131212aaa若a<0时,无解.∴a的取值范围是0≤a≤1.【例3】已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:(1)f(6)与f(4)(2)f(2)f(15)与解(1)∵y=f(x)的图像开口向下,且对称轴是x=3,∴x≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)(2)x3f(2)f(4)34f(x)x3∵对称轴=,∴=,而<<,函数在≥15时为减函数.∴>,即>.f(15)f(4)f(15)f(2)【例4】判断函数=≠在区间-,上的单调性.f(x)(a0)(11)axx21解任取两个值x1、x2∈(-1,1),且x1<x2.∵-=∵-<<<,+>,->,-<,-<.∴>f(x)f(x)1xx1xx10xx0x10x10012121221axxxxxxxxxxxx()()()()()()()()12211222121212211222111111当a>0时,f(x)在(-1,1)上是减函数.当a<0时,f(x)在(-1,1)上是增函数.【例5】利用函数单调性定义证明函数f(x)=-x3+1在(-∞,+∞)上是减函数.证取任意两个值x1,x2∈(-∞,+∞)且x1<x2.∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x)f(x)(xx)(xxxx)()xx0xxxx(xx)xx0xx0xxxx02112221212121212221221212121222证法一又∵x1-x2<0,∴f(x2)<f(x1)故f(x)在(-∞,+∞)上是减函数.证法二()xxxx(xx)xxxx0xx0x0x0xxxxxx012122212222122122112121222∵++=++,这里+与不会同时为,否则若+=且=,则=这与<矛盾,∴++>.12341212得f(x)在(-∞,+∞)上是减函数.证法三()txxxxx4x3x00x0x0tx03x0t0xxxx0f(x)f(x)f(x)(22121212121212221222121221令=++,其判别式Δ=-=-≤,若Δ=时,则=,那么≠,∴=>,若Δ=-<,则>,即++>,从而<,∴在-∞,+∞上是减函数.)【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x1x解定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x1、x2,且x1<x2.∵-=-,又-<,f(x)f(x)(xx)xxxx012121112xx221∴当0<x1<x2≤1或-1≤x1<x2<0时,有x1x2-1<0,x1x2>0,f(x1)>f(x2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x1<x2或x1<x2≤-1时,有x1x2-1>0,x1x2>0,f(x1)>f(x2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x>0时,f(x)min=f(1)=2,当x<0时,f(x)max=f(-1)=-2.由上述的单调区间及最值可大致画出=+的图像如图.-.yx2321x说明1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)4°例6是分层讨论,要逐步培养.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

星河书苑+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

最新文章

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部