2.3函数的奇偶性与周期性一、选择题1.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于().A.3B.1C.-1D.-3解析由f(-0)=-f(0),即f(0)=0.则b=-1,f(x)=2x+2x-1,f(-1)=-f(1)=-3.答案D2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为().A.-1B.0C.1D.2解析(构造法)构造函数f(x)=sinx,则有f(x+2)=sin=-sinx=-f(x),所以f(x)=sinx是一个满足条件的函数,所以f(6)=sin3π=0,故选B.答案B【点评】根据函数的性质构造出一个符合条件的具体函数,是解答抽象函数选择题的常用方法,充分体现了由抽象到具体的思维方法.3.已知函数y=f(x)是定义在R上的任意不恒为零的函数,则下列判断:①f(|x|)为偶函数;②f(x)+f(-x)为非奇非偶函数;③f(x)-f(-x)为奇函数;④[f(x)]2为偶函数.其中正确判断的个数有()A.1个B.2个C.3个D.4个解析对于①,用-x代替x,得f(|-x|)=f(|x|),所以①正确;对于②,用-x代替x,得f(-x)+f(x)=f(x)+f(-x),所以②错误;对于③,用-x代替x,得f(-x)-f(x)=-[f(x)-f(-x)],所以③正确;易知④错误.答案B4.已知f(x)是定义在R上的周期为2的周期函数,当x∈[0,1)时,f(x)=4x-1,则f(-5.5)的值为()A.2B.-1C.-D.1解析f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.答案D5.设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则f(2011)+f(2012)=()A.3B.2C.1D.0解析:由于f(x)是定义在R上的周期为3的周期函数,所以f(2011)+f(2012)=f(670×3+1)+f(671×3-1)=f(1)+f(-1),而由图像可知f(1)=1,f(-1)=2,所以f(2011)+f(2012)=1+2=3.答案:A6.设偶函数f(x)对任意x∈R,都有f(x+3)=-,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=()A.10B.C.-10D.-解析]由f(x+6)=-=f(x)知该函数为周期函数,周期为6,所以f(107.5)=f=f,又f(x)为偶函数,则f=f=-=-=.答案:B7.已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f()+f()的值为()A.-1B.1C.0D.无法计算解析由题意得g(-x)=f(-x-1),又因为f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,所以g(-x)=-g(x),f(-x)=f(x),∴f(x-1)=-f(x+1),∴f(x)=-f(x+2),∴f(x)=f(x+4),∴f(x)的周期为4,∴f()=f(1),f()=f(3)=f(-1),又 f(1)=f(-1)=g(0)=0,∴f()+f()=0.答案:C二、填空题8.若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=________.解析 f(x+5)=f(x)且f(-x)=-f(x),∴f(3)=f(3-5)=f(-2)=-f(2)=-2,f(4)=f(-1)=-f(1)=-1,故f(3)-f(4)=(-2)-(-1)=-1.答案-19.设奇函数f(x)的定义域为[-5,5],当x∈[0,5]时,函数y=f(x)的图象如图所示,则使函数值y<0的x的取值集合为________.解析由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).答案(-2,0)∪(2,5)10.设f(x)是偶函数,且当x>0时是单调函数,则满足f(2x)=f的所有x之和为________.解析 f(x)是偶函数,f(2x)=f,∴f(|2x|)=f,又 f(x)在(0∞,+)上为单调函数,∴|2x|=,即2x=或2x=-,整理得2x2+7x-1=0或2x2+9x+1=0,设方程2x2+7x-1=0的两根为x1,x2,方程2x2+9x+1=0的两根为x3,x4.则(x1+x2)+(x3+x4)=-+=-8.答案-811.已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2013)=________.解析法一当x=1,y=0时,f(0)=;当x=1,y=1时,f(2)=-;当x=2,y=1时,f(3)=-;当x=2,y=2时,f(4)=-;当x=3,y=2时,f(5)=;当x=3,y=3时,f(6)=;当x=4,y=3时,f(7)=;当x=4,y=4时,f(8)…=-;.∴f(x)是以6为周期的函数,∴f(2013)=f(3+335×6)=f(3)=-.法二 f(1)=,4f(x)·f(y)=f(x+y)+f(x-y),∴构造符合题意的函数f(x)=cosx,∴f(2013)...