第二讲空间点、直线、平面的位置关系(推荐时间:50分钟)一、选择题1.设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是()A.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β2.设l、m是两条不同的直线,α、β是两个不同的平面,给出下列4个命题:①若m⊥α,l⊥m,则l∥α;②若m⊥α,l⊂β,l∥m,则α⊥β;③若α∥β,l⊥α,m∥β,则l⊥m;④若α∥β,l∥α,m⊂β,则l∥m.其中正确命题的个数是()A.1B.2C.3D.43.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.关于直线a、b、c,以及平面M、N,给出下列命题:①若a∥M,b∥M,则a∥b;②若a∥M,b⊥M,则a⊥b;③若a∥b,b∥M,则a∥M;④若a⊥M,a∥N,则M⊥N.其中正确命题的个数为()A.0B.1C.2D.35.α、β表示平面,l表示既不在α内也不在β内的直线,存在以下三个事实:①l⊥α;②l∥β;③α⊥β.若以其中两个为条件,另一个为结论构成命题,其中正确命题的个数为()A.0个B.1个C.2个D.3个6.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④7.正方体ABCD—A1B1C1D1中,E是棱AB上的动点,则直线A1D与直线C1E所成的角等于()A.60°B.90°C.30°D.随点E的位置而变化8.如图,在正方形ABCD中,E、F分别是BC、CD的中点,AC∩EF=G.现在沿AE、EF、FA把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为P,则在四面体P-AEF中必有()A.AP⊥△PEF所在平面B.AG⊥△PEF所在平面C.EP⊥△AEF所在平面D.PG⊥△AEF所在平面二、填空题9.如图所示是正方体的平面展开图,在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个说法中,正确说法的序号依次是________.10.在四棱锥P—ABCD中,PA⊥底面ABCD,底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.11.如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、B、C、D、O为顶点的四面体的体积为________.12.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是________.三、解答题13.(·陕西)(1)如图所示,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).14.(·江苏)如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.答案1.D2.B3.B4.C5.C6.C7.B8.A9.③④10.BM⊥PC(或DM⊥PC)11.12.13.(1)证明方法一如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n).因为a⊥b,所以a·b=0.又因为a⊂π,n⊥π,所以a·n=0.故a·c=0,从而a⊥c.方法二如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.因为PO⊥π,a⊂π,所以直线PO⊥a.又a⊥b,b⊂平面PAO,PO∩b=P,所以a⊥平面PAO.又c⊂平面PAO,所以a⊥c.(2)解逆命题为a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.14.证明(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD....