§2.3等比数列2.3.1等比数列的概念(一)2.3.2等比数列的通项公式(一)一、基础过关1.在等比数列{an}中,a1=1,公比|q|≠1.若am=a1a2a3a4a5,则m=________.2.已知a,b,c,d成等比数列,且曲线y=x2-2x+3的顶点是(b,c),则ad=________.3.已知等比数列{an}的前三项依次为a-1,a+1,a+4,则an=________.4.如果-1,a,b,c,-9成等比数列,那么b=________.5.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为________.6.若a,b,c成等比数列,m是a,b的等差中项,n是b,c的等差中项,则+=________.7.已知等比数列{an},若a1+a2+a3=7,a1a2a3=8,求an.8.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8000,求这四个数.二、能力提升9.若数列{an}满足an+1=,若a1=1,则a19=________.10.若正项等比数列{an}的公比q≠1,且a3,a5,a6成等差数列,则=________.11.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2…,),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.12.已知(b-c)logmx+(c-a)logmy+(a-b)logmz=0.(1)若a,b,c依次成等差数列且公差不为0,求证:x,y,z成等比数列;(2)若正数x,y,z依次成等比数列且公比不为1,求证:a,b,c成等差数列.三、探究与拓展13.互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.答案1.112.23.4·()n-14.-35.6.27.解方法一∵a1a3=a,∴a1a2a3=a=8,∴a2=2.从而,解得a1=1,a3=4或a1=4,a3=1.当a1=1时,q=2;当a1=4时,q=.故an=2n-1或an=23-n.方法二由等比数列的定义知a2=a1q,a3=a1q2代入已知得,,即即将a1=代入①得2q2-5q+2=0,∴q=2或q=,由②得或∴an=2n-1或an=23-n.8.解设前三个数分别为a-d,a,a+d,则有a-d+a+a+d=48,即a=16.设后三个数分别为,b,bq,则有·b·bq=b3=8000,即b=20,∴这四个数分别为m,16,20,n,∴m=2×16-20=12,n==25.即所求的四个数分别为12,16,20,25.9.102310.11.-912.证明(1)∵a,b,c成等差数列且d≠0,∴b-c=a-b=-d,c-a=2d,∴(b-c)logmx+(c-a)logmy+(a-b)·logmz=2dlogmy-dlogmx-dlogmz=d(2logmy-logmx-logmz)=dlogm()=0.∵d≠0,∴logm=0,∴=1.∴y2=xz,即x,y,z成等比数列.(2)∵x,y,z成等比数列,且公比q≠1,∴y=xq,z=xq2,∴(b-c)logmx+(c-a)logmy+(a-b)·logmz=(b-c)logmx+(c-a)logm(xq)+(a-b)logm(xq2)=(b-c)logmx+(c-a)logmx+(c-a)·logmq+(a-b)logmx+2(a-b)logmq=(c-a)logmq+2(a-b)logmq=(a+c-2b)logmq=0,∵q≠1,∴logmq≠0,∴a+c-2b=0,即a,b,c成等差数列.13.解设三个数为,a,aq,∴a3=-8,即a=-2,∴三个数为-,-2,-2q.(1)若-2为-和-2q的等差中项,则+2q=4,∴q2-2q+1=0,q=1,与已知矛盾;(2)若-2q为-与-2的等差中项,则+1=2q,2q2-q-1=0,q=-或q=1(舍去),∴三个数为4,1,-2;(3)若-为-2q与-2的等差中项,则q+1=,∴q2+q-2=0,∴q=-2或q=1(舍去),∴三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为4,1,-2或-2,1,4.