电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 1.2.3直线与平面的位置关系(一)备考练习 苏教版VIP免费

高考数学一轮复习 1.2.3直线与平面的位置关系(一)备考练习 苏教版_第1页
高考数学一轮复习 1.2.3直线与平面的位置关系(一)备考练习 苏教版_第2页
高考数学一轮复习 1.2.3直线与平面的位置关系(一)备考练习 苏教版_第3页
1.2.3直线与平面的位置关系第一课时一、基础过关1.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是________.2.过直线l外两点,作与l平行的平面,则这样的平面有____________个.3.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.4.经过直线外一点有______个平面与已知直线平行.5.如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______________;(2)与直线AA1平行的平面是_______________________________;(3)与直线AD平行的平面是______________.6.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是____________.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.8.如图所示,P是▱ABCD所在平面外一点,E、F分别在PA、BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.二、能力提升9.设m、n是平面α外的两条直线,给出三个论断:①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)10.如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=______.11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB=________.12.如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面PAD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面PAD是否平行?试证明你的结论.三、探究与拓展13.正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.平行2.0,1或无数3.124.无数5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C16.平行7.证明取D1B1的中点O,连结OF,OB.∵OF綊B1C1,BE綊B1C1,∴OF綊BE.∴四边形OFEB是平行四边形,∴EF∥BO.∵EF⊄平面BDD1B1,BO⊂平面BDD1B1,∴EF∥平面BDD1B1.8.证明连结AF延长交BC于G,连结PG.在▱ABCD中,易证△BFG∽△DFA.∴==,∴EF∥PG.而EF⊄平面PBC,PG⊂平面PBC,∴EF∥平面PBC.9.①②⇒③(或①③⇒②)10.a11.m∶n12.(1)证明因为BC∥AD,AD⊂平面PAD,BC⊄平面PAD,所以BC∥平面PAD.又平面PAD∩平面PBC=l,BC⊂平面PBC,所以BC∥l.(2)解MN∥平面PAD.证明如下:如图所示,取PD中点E,连结AE,EN.又∵N为PC的中点,∴EN綊DC,又∵AM綊DC,∴EN綊AM.即四边形AMNE为平行四边形.∴AE∥MN,又MN⊄平面PAD,AE⊂平面PAD.∴MN∥平面PAD.13.证明方法一如图(1)所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连结MN.∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD.又∵AP=DQ,∴PE=QB.又∵PM∥AB∥QN,∴=,=.∴PM綊QN.∴四边形PQNM是平行四边形.∴PQ∥MN.又MN⊂平面BCE,PQ⊄平面BCE,∴PQ∥平面BCE.方法二如图(2)所示,连结AQ并延长交BC(或其延长线)于K,连结EK.∵KB∥AD,∴=.∵AP=DQ,AE=BD,∴BQ=PE.∴=.∴=.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部