电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

中考冲刺代几综合问题(基础) VIP免费

中考冲刺代几综合问题(基础) _第1页
中考冲刺代几综合问题(基础) _第2页
中考冲刺代几综合问题(基础) _第3页
中考冲刺:代几综合问题(基础)中考冲刺:代几综合问题(基础)一、选择题1.(2020•河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.2.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()二、填空题3.将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象如图所示,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,则t=______.4.(2020•宝山区一模)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC=8,tanA=,那么CF:DF=______.三、解答题5.一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n层所对应的点数;(2)试写出n层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?6.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.(1)用含x的代数式表示BQ、PB的长度;(2)当x为何值时,△PBQ为此资料由网络收集而来,如有侵权请告知上传者立即删除。资料共分享,我们负责传递知识。等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由7.阅读理解:对于任意正实数a、b, 结论:在a+b≥2(a、b均为正实数)中,若a.b为定值p,则a+b≥2,只有当a=b时,a+b有最小值2根据上述内容,回答下列问题:(1)若m>0,只有当m=____________时,m+有最小值,最小值为____________;(2)探究应用:已知A(-3,0)、B(0,-4),点P为双曲线y=(x>0)上的任一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.8.(深圳期末)如图,平面直角坐标系中,直线AB:y=﹣x+3与坐标轴分别交于A、B两点,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点.(1)直接写出A、B的坐标;A______,B______;(2)是否存在点P,使得△AOP的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.(3)是否存在点P使得△ABP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).(1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标;(3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S=时,在抛物线上存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形,求出点R的坐标.10.已知:抛物线此资料由网络收集而来,如有侵权请告知上传者立即删除。资料共分享,我们负责传递知识。y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=x交于点B、C(B在右、C在左).(1)求抛物线的解析式;(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

书海行舟+ 关注
实名认证
内容提供者

热爱教学事业,对互联网知识分享很感兴趣

最新文章

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部