【成才之路】-学年高中数学1.4.3+4单位圆与正弦函数、余弦函数的基本性质单位圆的对称性与诱导公式基础巩固北师大版必修4一、选择题1.sin的值是()A.-B.C.-D.[答案]B[解析]sin=sin(3π-)=sin(π-)=sin=.2.已知f(cosx)=cos2x,则f(sin30°)的值等于()A.B.-C.0D.1[答案]B[解析]∵f(cosx)=cos2x,∴f(sin30°)=f(cos60°)=cos120°=-.应选B.3.若sin(π+α)=-,则sin(4π-α)的值是()A.B.-C.-D.[答案]B[解析]∵sin(π+α)=-,∴sinα=.∴sin(4π-α)=sin(-α)=-sinα=-.4.cos2010°=()A.B.-C.D.-[答案]D[解析]cos2010°=cos(5×360°+210°)=cos210°=cos(180°+30°)=-cos30°=-.5.已知sin(α-)=,则cos(+α)的值等于()A.B.-C.-D.[答案]C[解析]cos(+α)=sin[-(+α)]=sin(-α)=-sin(α-)=-.6.已知sin10°=k,则cos620°的值等于()A.kB.-kC.±kD.不能确定[答案]B[解析]cos620°=cos(360°+260°)=cos260°=cos(180°+80°)=-cos80°=-sin10°=-k.二、填空题7.sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)=________.[答案]1[解析]原式=-sin1200°cos1290°-cos1020°·sin1050°=-sin(-60°+7×180°)·cos(30°+7×180°)-cos(-60°+3×360°)·sin(-30°+3×360°)=sin(-60°)(-cos30°)-cos(-60°)sin(-30°)=-×(-)-×(-)=1.8.已知=,则cos(3π-θ)=________.[答案][解析]∵==,∴cosθ=-.∴cos(3π-θ)=cos(π-θ)=-cosθ=.三、解答题9.已知cos(75°+α)=,求cos(105°-α)+sin(15°-α)的值.[解析]∵(105°-α)+(75°+α)=180°,(15°-α)+(α+75°)=90°,∴cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-,sin(15°-α)=sin[90°-(α+75°)]=cos(75°+α)=.∴cos(105°-α)+sin(15°-α)=-+=0.一、选择题1.已知函数f(x)=cos,则下列等式成立的是()A.f(2π-x)=f(x)B.f(2π+x)=f(x)C.f(-x)=-f(x)D.f(-x)=f(x)[答案]D[解析]∵f(x)=cos,∴f(-x)=cos(-)=cos,∴C不对;又f(2π-x)=cos=cos(π-)=-cos=-f(x).∴A不对.∵f(2π+x)=cos=cos(π+)=-cos≠f(x),B不对,故选D.2.若sin(π+α)+cos(+α)=-m,则cos(-α)+2sin(6π-α)的值为()A.-mB.-mC.mD.m[答案]B[解析]∵sin(π+α)+cos(+α)=-m,∴-sinα-sinα=-2sinα=-m,∴sinα=.∴cos(-α)+2sin(6π-α)=-sinα-2sinα=-3sinα=-m.二、填空题3.若|cosα|=cos(π+α),则角α的集合为________.[答案][解析]因为|cosα|=cos(π+α)=-cosα,所以|cosα|=-cosα,所以cosα≤0,所以角α的集合为.4.若P(-4,3)是角α终边上一点,则的值为________.[答案]-[解析]∵P(-4,3)在角α的终边上,∴|OP|=5,∴sinα=,cosα=-.∴原式===-.三、解答题5.化简:.[解析]原式====1.6.求证:对任意的整数k,=-1.[证明]左边=(1)当k为偶数时,设k=2n(n∈Z),∴左边====-1.(2)当k为奇数时,设k=2n+1(n∈Z),同理可得左边=-1,综上原等式成立.7.已知函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,又知f()=-1,求f()的值.[解析]f()=asin(π+α)+bcos(π+β)=asin(π+π+α)+bcos(π+π+β)=asin(π+α)+bcos(π+β)=-asinα-bcosβ=-(asinα+bcosβ).∵f()=-1,∴asinα+bcosβ=1,∴f()=asin(π+α)+bcos(π+β)=asinα+bcosβ=1.