第5讲椭圆1.(2016·洛阳统考)已知中心在原点的椭圆C的右焦点为F(,0),直线y=x与椭圆的一个交点的横坐标为2,则椭圆方程为()A.+y2=1B.x2+=1C.+=1D.+=1解析:选C.依题意,设椭圆方程为+=1(a>b>0),则有,由此解得a2=20,b2=5,因此所求的椭圆方程是+=1.2.(2016·淮南模拟)椭圆+=1的离心率为,则k的值为()A.-21B.21C.-或21D.或21解析:选C.若a2=9,b2=4+k,则c=,由=,即=,解得k=-;若a2=4+k,b2=9,则c=,由=,即=,解得k=21.3.矩形ABCD中,|AB|=4,|BC|=3,则以A,B为焦点,且过C,D两点的椭圆的短轴的长为()A.2B.2C.4D.4解析:选D.依题意得|AC|=5,所以椭圆的焦距为2c=|AB|=4,长轴长2a=|AC|+|BC|=8,所以短轴长为2b=2=2=4.4.(2016·烟台质检)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆方程为()A.+=1B.+=1C.+=1D.+=1解析:选A.设椭圆的标准方程为+=1(a>b>0).由点P(2,)在椭圆上知+=1.又|PF1|,|F1F2|,|PF2|成等差数列,则|PF1|+|PF2|=2|F1F2|,即2a=2·2c,=,又c2=a2-b2,联立得a2=8,b2=6.5.(2016·江西省九校模拟)已知椭圆+=1(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且α∈,则该椭圆离心率e的取值范围为()A.B.C.D.解析:选A.设椭圆的左焦点为F′,连接AF′,BF′,结合题目条件可得四边形AFBF′为矩形,则有|AB|=|FF′|=2c,结合椭圆定义有|AF|+|BF|=2a,而|AF|=2csinα,|BF|=2ccosα,则有2csinα+2ccosα=2a,则e===,而α∈,则α+∈,那么sin∈,故e∈.6.(2016·唐山质检)已知动点P(x,y)在椭圆C:+=1上,F为椭圆C的右焦点,若点M满足|MF|=1,且MP·MF=0,则|PM|的最小值为()A.B.3C.D.11解析:选A.由题意得F(3,0),|PM|2=|PF|2-|MF|2≥(a-c)2-1=(5-3)2-1=3.所以|PM|min=.7.若椭圆+=1(a>b>0)与曲线x2+y2=a2-b2恒有公共点,则椭圆的离心率e的取值范围是________.解析:由题意知,以半焦距c为半径的圆与椭圆有公共点,故b≤c,所以b2≤c2,即a2≤2c2,所以≤.又<1,所以≤e<1.答案:8.椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.解析:已知F1(-c,0),F2(c,0),直线y=(x+c)过点F1,且斜率为,所以倾斜角∠MF1F2=60°.因为∠MF2F1=∠MF1F2=30°,所以∠F1MF2=90°,所以|MF1|=c,|MF2|=c.由椭圆定义知|MF1|+|MF2|=c+c=2a,所以离心率e===-1.答案:-19.已知P为椭圆+=1上的一点,F1,F2为两焦点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为________.解析:由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.答案:710.(2016·石家庄一模)已知椭圆+=1(a>b>0)的两个焦点分别为F1,F2,设P为椭圆上一点,∠F1PF2的外角平分线所在的直线为l,过点F1,F2分别作l的垂线,垂足分别为点R,S,当P在椭圆上运动时,R,S所形成的图形的面积为________.解析:延长F1R交F2P的延长线于点R′,则|F1R|=|RR′|,|F1P|=|PR′|,所以|R′F2|=|R′P|+|PF2|=|F1P|+|PF2|=2a.因为R,O分别是F1R′,F1F2的中点,所以|OR|=a.同理可得|OS|=a.因此R,S的轨迹是以原点O为圆心,以a为半径的圆,其方程为x2+y2=a2,故R,S所形成的图形的面积为πa2.答案:πa211.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆+=1有相同的离心率且经过点(2,-);(2)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5,3,过P且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为+=t1或+=t2(t1,t2>0),因为椭圆过点(2,-),所以t1=+=2,或t2=+=.故所求椭圆的标准方程为+=1或+=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为+=1(a>b>0)或+=1(a>b>0),由已知条...