高考数学前三大题突破训练(1-5)(一)17.已知0,为()cos2fxx的最小正周期,1tan14,,a(cos2),b,且abm.求22cossin2()cossin的值18.在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求:(1)乙连胜四局的概率;(2)丙连胜三局的概率.19.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD。已知∠ABC=45°,AB=2,BC=22,SA=SB=3。(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SAB所成角的大小;(二)用心爱心专心1ABCDSEF17.在ABC△中,1tan4A,3tan5B.(Ⅰ)求角C的大小;(Ⅱ)若ABC△最大边的边长为17,求最小边的边长.18.每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6).(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率;(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。19.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。(Ⅰ)求证:EF∥平面SAD;(Ⅱ)设SD=2CD,求二面角A-EF-D的大小(三)用心爱心专心217.已知ABC△的面积为3,且满足06ABAC�≤≤,设AB�和AC�的夹角为.(I)求的取值范围;(II)求函数2()2sin3cos24fπ的最大值与最小值.18.某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求(1)甲、乙两人都没有中奖的概率;(2)甲、两人中至少有一人获二等奖的概率.19.在RtAOB△中,π6OAB,斜边4AB.RtAOC△可以通过RtAOB△以直线AO为轴旋转得到,且二面角BAOC是直二面角.动点D的斜边AB上.(I)求证:平面COD平面AOB;(II)当D为AB的中点时,求异面直线AO与CD所成角的大小;(III)求CD与平面AOB所成角的最大值(四)用心爱心专心3OCADBENMABDCO17.已知函数2π()2sin3cos24fxxx,ππ42x,.(I)求()fx的最大值和最小值;(II)若不等式()2fxm在ππ42x,上恒成立,求实数m的取值范围.17.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,。(1)求;(2)求证18.甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求:(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率;(2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率.19.如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,4ABC,OAABCD底面,2OA,M为OA的中点,N为BC的中点。(Ⅰ)证明:直线MNOCD平面‖;用心爱心专心4(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离。(五)17.已知函数2πππ()12sin2sincos888fxxxx.求:(I)函数()fx的最小正周期;(II)函数()fx的单调增区间.17.在数列中,,。(1)设,证明:数列是等差数列;(2)求数列的前项和。18.某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。(I)求取6件产品中有1件产品是二等品的概率。(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率。用心爱心专心519.如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥CD,AD=2AB=2BC=2,O为AD中点。(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)求点A到平面PCD的距离参考答案(一)17.解:因为为π()cos28fxx...