2018年高考数学一轮复习第二章函数、导数及其应用课时达标15导数与函数的极值、最值理[解密考纲]本考点主要考查利用导数研究函数的单调性、极值、最值、或者已知最值求参数等问题.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.若函数f(x)=x3-2cx2+x有极值点,则实数c的取值范围为(D)A.B.C.∪D.∪解析:若函数f(x)=x3-2cx2+x有极值点,则f′(x)=3x2-4cx+1=0有根,故Δ=(-4c)2-12>0,从而c>或c<-.2.函数f(x)=x2-lnx的最小值为(A)A.B.1C.0D.不存在解析:f′(x)=x-=,且x>0,令f′(x)>0,得x>1;令f′(x)<0,得00,在(-1,0]上,f′(x)≤0,则当x∈[-2,0]时函数有最大值,为f(-1)=2.当a≤0时,若x>0,显然eax≤1,此时函数在[-2,2]上的最大值为2,符合题意;当a>0时,若函数在[-2,2]上的最大值为2,则e2a≤2,得a≤ln2,综上可知a的取值范围是,故选D.5.已知函数f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为(A)A.-37B.-29C.-5D.-11解析:f′(x)=6x2-12x=6x(x-2),由f′(x)=0得x=0或x=2. f(0)=m,f(2)=-8+m,f(-2)=-40+m,显然f(0)>f(2)>f(-2),∴m=3,最小值为f(-2)=-37,故选A.6.(2017·河北三市二联)若函数f(x)=x3-x2+2bx在区间[-3,1]上不是单调函数,则函数f(x)在R上的极小值为(A)1A.2b-B.b-C.0D.b2-b3解析:f′(x)=x2-(2+b)x+2b=(x-b)(x-2). 函数f(x)在区间[-3,1]上不是单调函数,∴-30,得x2.由f′(x)<0,得b0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.②当a>0时,令f′(x)=0,得ex=a,即x=lna.2x∈(-∞,lna)时,f′(x)<0;x∈(lna,+∞)时,f′(x)>0,所以f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取得极小值,且极小值为f(l...