课时作业(六)数列的递推公式(选学)A组(限时:10分钟)1.已知数列{an}中,a1=1,an=an-1+1(n≥2),则通项公式为()A.an=1B.an=2n-1C.an=nD.an=n+1解析:由an=an-1+1知an-an-1=1,∴数列的相邻两项中后项比前项大1.∴通项公式为an=n.答案:C2.已知数列an<0,且2an+1=an,则数列{an}是()A.递增数列B.递减数列C.常数列D.无法判断解析: an<0,∴an+1-an=an-an=-an>0.∴数列{an}是递增数列.答案:A3.已知数列{an},a1=1,a2=2,an=an-1+an-2(n≥3),则a5=________.解析:由题知a3=a2+a1=3,a4=a3+a2=5,∴a5=a4+a3=8.答案:84.若数列{an}满足a1=1,a2=2,anan-2=an-1(n≥3),则a2014=________.解析:由anan-2=an-1,得an=(n≥2),∴a3==2,a4==1,a5==,a6==,a7==1,….可知数列{an}具有周期性,周期为6,∴a2014=a6×335+4=a4=1.答案:15.已知数列{an}满足a4n-3=1,a4n-1=0,a2n=2an,n∈N*,则a2013=________;a2014=________.解析:a2013=a504×4-3=1,a2014=2a1007=2a4×252-1=0.答案:10B组(限时:30分钟)1.已知数列{an},a1=1,an-an-1=n-1(n≥2).则a6等于()A.7B.11C.16D.17解析:由题可知a6=a1+(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)=1+1+2+3+4+5=16.答案:C2.已知数列{an}中,a1=2,an=-(n≥2),则a2013等于()A.-B.C.2D.-2解析: an+2=-=an,∴数列奇数项相同,偶数项相同,∴a2013=a1=2.答案:C3.数列{an}中,a1=1,对所有的n≥2,都有a1a2a3·…·an=n2,则a3+a5等于()1A.B.C.D.解析:由已知得⇒a3=,⇒a5=,∴a3+a5=.答案:C4.已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是()A.2n-1B.n-1C.n2D.n解析:方法一:由已知整理得(n+1)an=nan+1,∴=.∴数列是常数列.且==1,∴an=n.方法二:累乘法:n≥2时,=,=…==两边分别相乘得=n.又 a1=1,∴an=n.答案:D5.已知数列{an}中,a1=1,an+1=2an+1,则数列{an}的通项公式为()A.an=2n-1B.an=2n-1C.an=n-1D.an=1+n解析:方法一:由已知a1=1=21-1,a2=2×1+1=3=22-1,a3=2×3+1=7=23-1,…,由此归纳得an=2n-1.方法二: an+1+1=2(an+1),∴=2,用累乘法可得an+1=2n.∴an=2n-1.答案:A6.下图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,按图中结构第n个图有化学键()A.6n个B.(4n+2)个C.(5n-1)个D.(5n+1)个解析:各图中的短线依次为6,6+5,6+5+5,…,若视6为5+1,则这个数列1+5,1+5+5,1+5+5+5,…,于是第n个图的化学键个数应为an=5n+1.答案:D7.数列{an}满足an+1=若a1=,则a9等于________.解析:a1=∈,2∴a2=2a1-1=,∴a3=2a2-1=∈,∴a4=2a3=,同理a5=,a6=,a7=,a8=,a9=.答案:8.数列{an}中a1=1,a2=3,a-an-1·an+1=(-1)n-1(n≥2),那么a4=________.解析:令n=2得a-a1·a3=-1,∴a3=10.令n=3代入,得a-a2a4=(-1)2,∴a4=33.答案:339.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意的自然数均有xn+1=f(xn),则x2014=________.x12345f(x)41352解析:x1=f(x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5=x0,从而数列{xn}是周期为4的数列,于是a2014=a4×503+2=a2=1.答案:110.已知数列{an}中,a1=1,an+1=(n∈N*),求通项an.解: an+1=,∴an+1(an+2)=2an.∴an+1an=2an-2an+1.两边同除以2an+1an,得-=.∴-=,-=,…,-=.把以上各式累加得-=.又 a1=1,∴an=.故数列{an}的通项an=(n∈N*).11.已知数列{an},a1=a(a>0,a≠1),an=a·an-1(n≥2),定义bn=an·lgan,如果数列{bn}是递增数列,求a的取值范围.解:由于a1=a,an=a·an-1(n≥2),则=a.∴an=··…···a1=a·a·…·a·a·a=an,∴bn=an·lgan=an·lgan=nan·lga.由bn<bn+1得nan·lga<(n+1)an+1·lga①(1)当a>1时,lga>0...