限时规范训练空间中的平行与垂直限时40分钟,实际用时________分值80分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.(2016·高考山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为直线a和直线b相交,所以直线a与直线b有一个公共点,而直线a,b分别在平面α、β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a与直线b可能相交、平行、异面.故选A.2.(2017·高考全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:选C.根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A项,若A1E⊥DC1,那么D1E⊥DC1,很显然不成立;B项,若A1E⊥BD,那么BD⊥AE,显然不成立;C项,若A1E⊥BC1,那么BC1⊥B1C,成立,反过来BC1⊥B1C时,也能推出BC1⊥A1E,所以C成立,D项,若A1E⊥AC,则AE⊥AC,显然不成立,故选C.3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析:选A.选项A中,由平面与平面垂直的判定定理可知A正确;选项B中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;选项C中,l∥β时,α,β可以相交;选项D中,α∥β时,l,m也可以异面.4.已知α,β为两个平面,l为直线,若α⊥β,α∩β=l,则()A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直解析:选D.由α⊥β,α∩β=l,知:垂直于平面β的平面与平面α平行或相交,故A不正确;垂直于直线l的直线若在平面β内,则一定垂直于平面α,否则不一定,故B不正确;垂直于平面β的平面与l的关系有l⊂β,l∥β,l与β相交,故C不正确;由平面垂直的判定定理知:垂直于直线l的平面一定与平面α,β都垂直,故D正确.5.设a,b,c表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是()A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.a,b⊂α,a∩b=P,c⊥a,c⊥b,若α⊥β,则c⊂β解析:选C.利用排除法求解.A的逆命题为:c⊥α,若α∥β,则c⊥β,成立;B的逆命题为:b⊂α,c⊄α,若b∥c,则c∥α,成立;C的逆命题为:b⊂β,若β⊥α,则b⊥α,不成立;D的逆命题为:a,b⊂α,a∩b=P,c⊥a,c⊥b,若c⊂β,则α⊥β,成立故选C.6.(2017·江西六校联考)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确命题的序号是()A.①④B.②④C.①D.④解析:选A.借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,故①正确;对于②,平面α,β可能垂直,如图(1)所示,故②不正确;对于③,平面α,β可能垂直,如图(2)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(3)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.综上,选A.二、填空题(本题共3小题,每小题5分,共15分)7.如图,四棱锥PABCD的底面是直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.解析:取PD的中点F,连接EF,AF,在△PCD中,EF綊CD.又因为AB∥CD且CD=2AB,所以EF綊AB,所以四边形ABEF是平行四边形,所以EB∥AF.又因为EB⊄平面PAD,AF⊂平面PAD,所以BE∥平面PAD.答案:平行8.(2017·山师大附中模拟)若α,β是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直...