3.1系数的扩充课后导练基础达标1.复数1-i的虚部是()A.1B.-1C.iD.-i解析:由虚部定义可知B正确.答案:B2.设全集I={复数},R={实数},M={纯虚数},则()A.M∪R=IB.C.D.解析:∵={实部不为0的虚数}∪R,∴∩R=R.答案:C3.以3i-2的虚部为实部,以3i2+2i的实部为虚部的复数是()A.3-3iB.3+IC.-2+2ID.2+2i解析:3i-2的虚部为3,3i2+2i的实部为-3.∴以3i-2的虚部为实部,以3i2+2i的实部为虚部的复数是3-3i.答案:A4.i2+i是()A.实数B.虚数C.0D.1解析:∵i2=-1,∴i2+i=-1+i.答案:B5.若a、b、c∈C,则(a-b)2+(b-c)2=0是a=b=c的()A.充要条件B.充分但不必要条件C.必要但不充分条件D.既不充分也不必要条件解析:取a=2+i,b=2,c=1,则(a-b)2+(b-c)2=(2+i-2)2+(2-1)2=i2+1=-1+1=0.显然a≠b≠c.∴充分性不成立,必要性显然成立.答案:C6.若x是实数,y是纯虚数且满足2x-1+2i=y,则x=_________,y=_________.解析:由x是实数,y是纯虚数得.2,012yix1∴iyx2,21答案:212i7.若log2(x2-3x-2)+ilog2(x2+2x+1)>1,则实数x的值(或范围)是_________.解析:∵log2(x2-3x-2)+ilog2(x2+2x+1)>1,∴.0)12(log,1)23(log2222xxxx∴x=-2.答案:-28.(2006上海高考,理5)若复数z同时满足z-z=2i,z=iz(i为虚数单位),则z=_________.解析:设z=x+yi(x,y∈R),则),(,2)()(yixiyixiyixyix即.,22yxiyixiyi∴.1,1yxy∴z=-1+i.答案:-1+i9.若log2(m2-3m-3)+ilog2(m-2)为纯虚数,求实数m的值.解:∵log2(m2-3m-3)+ilog2(m-2)为纯虚数,∴.0)2(log,0)33(log222mmm∴m=4.故当m=4时,log2(m2-3m-3)+ilog2(m-2)是纯虚数.10.已知1x6xx2+(x2-2x-3)i=0(x∈R),求x的值.解:由复数相等的定义得.032,01622xxxxx解得x=3.∴x=3为所求.综合运用211.m取何实数时,复数z=3m6mm2+(m2-2m-15)i.(1)是实数?(2)是虚数?(3)是纯虚数?解:(1)当03,01522mmm时,即,3,35mmm或∴m=5时,z是实数.(2)当03,01522mmm时,即.3,35mmm且∴当m≠5且m≠-3时,z是虚数.(3)当0152,03,0622mmmmm时,即.35,3,23mmmmm且或∴当m=3或-2时,z是纯虚数.12.问m为何值时,复数z=(m-1)+(m-1)(m+2)i的值为零.解析:∵z=0,∴,0)2)(1(,01mmm∴m=1.13.设z=log2(a2-3a-3)+i[1+21log(a+3)](a∈R),如果z为纯虚数,试求a.解析:∵z是纯虚数∴②①0)3(log10)33(log2122aaa解①可知a2-3a-3=1,则a=4或a=-1.解②可知:a≠-1.综上所述:a=4.3拓展探究14.已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.解:∵M∪P=P,∴MP.∴由(m2-2m)+(m2+m-2)i=-1.得.02,1222mmmm解之,得m=1.由(m2-2m)+(m2+m-2)i=4i,得.42,0222mmmm解之,得m=2.综上,可知m=1或m=2.4