2015-2016学年山东省潍坊市昌乐二中高三(上)期中数学模拟试卷(文科)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={x|x2﹣2x>0},B={y|y=2x,x>0},R是实数集,则(∁RB)∪A等于()A.RB.(﹣∞,0)∪1,+∞)C.(0,1)D.(﹣∞,1]∪(2,+∞)2.已知,若共线,则实数x=()A.B.C.1D.23.函数的定义域是()A.B.C.D.4.已知角α的终边经过点P(﹣1,2)),则的值是()A.3B.﹣3C.D.﹣5.已知函数f(x)=.若f(1)=f(﹣1),则实数a的值等于()A.1B.2C.3D.46.在△ABC中,若有=cos2,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.直角三角形或锐角三角形7.△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.8.下列命题错误的是()A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”B.若命题,则¬p:∀x∈R,x2﹣x+1>0C.若向量满足,则与的夹角为钝角D.△ABC中,sinA>sinB是A>B的充要条件9.已知函数,则y=f(x)的图象大致为()A.B.C.D.10.若不等式≤a≤在t∈(0,2]上恒成立,则a的取值范围是()A.[,1]B.[,1]C.[,]D.[,2]二、填空题:(本大题共5小题,每小题5分,共16分.)11.已知等差数列{an}的前n项和,则an=.12.函数的图象,其部分图象如图所示,则f(x)=.13.已知函数f(x)=log2x+x﹣2的零点在区间(n,n+1)(n∈Z)内,则n=.14.已知函数f(x)满足f(﹣x)=f(x),当a,b∈(﹣∞,0)时总有,若f(m+1)>f(2m),则实数m的取值范围是.15.有下列命题:①的图象关于直线x=对称;②y=的图象关于点(﹣1,1)对称;③关于x的方程ax2﹣2ax﹣1=0有且仅有一个实根,则a=﹣1;④满足条件AC=,∠B=60°,AB=1的三角形△ABC有两个.其中真命题的序号是.三、解答题:本大题6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.17.已知等差数列{an}满足:a5=11,a2+a6=18.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=an+2n,求数列{bn}的前n项和Sn.18.已知向量(ω>0),函数f(x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)若将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.19.在△ABC中,角A,B,C的对边分别为a,b,c,bcosC=a﹣c.(Ⅰ)求角B的大小;(Ⅱ)若b=1,求a+c的最大值.20.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.21.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.2015-2016学年山东省潍坊市昌乐二中高三(上)期中数学模拟试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={x|x2﹣2x>0},B={y|y=2x,x>0},R是实数集,则(∁RB)∪A等于()A.RB.(﹣∞,0)∪1,+∞)C.(0,1)D.(﹣∞,1]∪(2,+∞)【考点】交、并、补集的混合运算.【专题】集合.【分析】化简A、B,求出∁RB,再计算(∁RB)∪A.【解答】解: A={x|x2﹣2x>0}={x|x<0或x>2}=(﹣∞,0)∪(2,+∞),B={y|y=2x,x>0}={y|y>1},∴∁RB={y|y≤1}=(﹣∞,1],∴(∁RB)∪A=(﹣∞,1]∪(2,+∞...