【高考领航】2017届高考数学大一轮复习第五章数列5.2等差数列及其前n项和课时规范训练理北师大版[A级基础演练]1.(2014·高考福建卷)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14解析:由题意知a1=2,由S3=3a1+×d=12,解得d=2,所以a6=a1+5d=2+5×2=12,故选C.答案:C2.(2016·石家庄质检)已知等差数列满足a2=3,Sn-Sn-3=51(n>3),Sn=100,则n的值为()A.8B.9C.10D.11解析:由Sn-Sn-3=51得,an-2+an-1+an=51,所以an-1=17,又a2=3,Sn==100,解得n=10.答案:C3.(2014·高考辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则()A.d<0B.d>0C.a1d<0D.a1d>0解析:把2a1an看成一个整体bn,利用递减数列的关系式bn>bn+1求解.设bn=2a1an,即bn+1=2a1an+1,由于{2a1an}是递减数列,则bn>bn+1,即2a1an>2a1an+1. y=2x是单调增函数,∴a1an>a1an+1,∴a1an-a1(an+d)>0,∴a1(an-an-d)>0,即a1(-d)>0,∴a1d<0.答案:C4.(2016·保定调研)已知等差数列的前n项和为Sn,且a3+a8=13,S7=35,则a7=__________.解析:设数列的公差为d,则由已知得(a1+2d)+(a1+7d)=13①,S7==35②.联立①②,解方程组得a1=2,d=1,∴a7=a1+6d=8.答案:85.(2016·日照模拟)等差数列{an}的前m项和为30,前3m项和为90,则它的前2m项和为________.解析:法一:由Sm,S2m-Sm,S3m-S2m成等差数列,可得2(S2m-Sm)=Sm+S3m-S2m,即S2m===60.法二:由Sn=na1+d,得=a1+(n-1)×,所以是以a1为首项,为公差的等差数列,从而,,成等差数列,所以+=2×,所以S2m=+Sm=30+30=60.答案:606.(2014·高考北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和最大.解析: a7+a8+a9=3a8>0,∴a8>0. a7+a10=a8+a9<0,∴a9<-a8<0.∴数列的前8项和最大,即n=8.答案:87.设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.(1)求数列{an}的公比;(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.解:(1)设数列{an}的公比为q(q≠0,q≠1),由a5,a3,a4成等差数列,得2a3=a5+a4,即2a1q2=a1q4+a1q3,由a1≠0,q≠0得q2+q-2=0,解得q1=-2,q2=1(舍去),所以q=-2.(2)证明:法一:对任意k∈N+,Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk)=ak+1+ak+2+ak+1=2ak+1+ak+1·(-2)=0,所以,对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.法二:对任意k∈N+,2Sk=,Sk+2+Sk+1=+=,2Sk-(Sk+2+Sk+1)=-=[2(1-qk)-(2-qk+2-qk+1)]=(q2+q-2)=0,因此,对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.8.在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.解:(1)由题意得,a1·5a3=(2a2+2)2,由a1=10,{an}为公差为d的等差数列得,d2-3d-4=0,解得d=-1或d=4.所以an=-n+11(n∈N*)或an=4n+6(n∈N*).(2)设数列{an}的前n项和为Sn.因为d<0,由(1)得d=-1,an=-n+11,所以当n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-n2+n;当n≥12时,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|an|=[B级能力突破]1.(2016·济南一模)在等差数列{an}中,a1=-2016,其前n项和为Sn,若-=2,则S2016的值等于()A.-2014B.-2015C.-2013D.-2016解析: -=2,∴-=2,故a12-a10=4,∴2d=4,d=2.∴S2016=2016a1+=-2016.答案:D2.(2016·山西四校联考)已知等差数列的前n项和为Sn,若S8>0且S9<0,则当Sn最大时n的值是()A.8B.4C.5D.3解析:=>0,=<0,所以a4>0,a5<0,即数列的前4项都是正数,所以选B.答案:B3.(2016·佳木斯模拟)若数列{an}满足a1=15,且3an+1=3an-2,则使ak·ak+1<0的k值为()A.22B.21C.24D.23解析:因为3an+1=3an-2,所以an+1-an=-,所以数列{an}是首项为15,公差为-的等差数列,所以an=15-·(n-1)=-n+,...