电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第3章 第1讲 文 新人教A版 VIP免费

高考数学一轮复习 第3章 第1讲 文 新人教A版 _第1页
高考数学一轮复习 第3章 第1讲 文 新人教A版 _第2页
高考数学一轮复习 第3章 第1讲 文 新人教A版 _第3页
第1讲导数的概念及运算基础巩固题组(建议用时:40分钟)一、选择题1.(·深圳中学模拟)曲线y=x3在原点处的切线()A.不存在B.有1条,其方程为y=0C.有1条,其方程为x=0D.有2条,它们的方程分别为y=0,x=0解析 y′=3x2,∴k=y′|x=0=0,∴曲线y=x3在原点处的切线方程为y=0.答案B2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0解析切线l的斜率k=4,设y=x4的切点的坐标为(x0,y0),则k=4x=4,∴x0=1,∴切点为(1,1),即y-1=4(x-1),整理得l的方程为4x-y-3=0.答案A3.(·长春模拟)曲线y=xex+2x-1在点(0,-1)处的切线方程为()A.y=3x-1B.y=-3x-1C.y=3x+1D.y=-2x-1解析根据导数运算法则可得y′=ex+xex+2=(x+1)ex+2,则曲线y=xex+2x-1在点(0,-1)处的切线斜率为y′|x=0=1+2=3.故曲线y=xex+2x-1在点(0,-1)处的切线方程为y+1=3x,即y=3x-1.答案A4.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f′2(x),…,fn+1(x)=fn′(x),n∈N*,则f2015(x)等于()A.-sinx-cosxB.sinx-cosxC.-sinx+cosxD.sinx+cosx解析 f1(x)=sinx+cosx,∴f2(x)=f1′(x)=cosx-sinx,∴f3(x)=f2′(x)=-sinx-cosx,∴f4(x)=f3′(x)=-cosx+sinx,∴f5(x)=f4′(x)=sinx+cosx,∴fn(x)是以4为周期的函数,∴f2015(x)=f3(x)=-sinx-cosx,故选A.答案A5.(·陕西卷)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=x3-x2-xB.y=x3+x2-3xC.y=x3-xD.y=x3+x2-2x解析设三次函数的解析式为y=ax3+bx2+cx+d(a≠0),则y′=3ax2+2bx+c.由已知得y=-x是函数y=ax3+bx2+cx+d在点(0,0)处的切线,则y′|x=0=-1⇒c=-1,排除B、D.又 y=3x-6是该函数在点(2,0)处的切线,则y′|x=2=3⇒12a+4b+c=3⇒12a+4b-1=3⇒3a+b=1.只有A项的函数符合,故选A.答案A二、填空题6.(·珠海一模)若曲线y=ax2-lnx在点(1,a)处的切线平行于x轴,则a=________.解析y′=2ax-,∴y′|x=1=2a-1=0,∴a=.答案7.(·广东卷)曲线y=-5ex+3在点(0,-2)处的切线方程为__________________.解析由y=-5ex+3得,y′=-5ex,所以切线的斜率k=y′|x=0=-5,所以切线方程为y+2=-5(x-0),即5x+y+2=0.答案5x+y+2=08.(·江苏卷)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是______.解析y=ax2+的导数为y′=2ax-,直线7x+2y+3=0的斜率为-.由题意得解得则a+b=-3.答案-3三、解答题9.已知曲线y=x3+.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程.解(1) P(2,4)在曲线y=x3+上,且y′=x2,∴在点P(2,4)处的切线的斜率为y′|x=2=4.∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=x3+与过点P(2,4)的切线相切于点A,则切线的斜率为y′|x=x0=x.∴切线方程为y-=x(x-x0),即y=x·x-x+. 点P(2,4)在切线上,∴4=2x-x+,即x-3x+4=0,∴x+x-4x+4=0,∴x(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1,或x0=2,故所求的切线方程为x-y+2=0,或4x-y-4=0.10.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.解(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=.又f′(x)=a+,于是解得故f(x)=x-.(2)设P(x0,y0)为曲线上任一点,由y′=1+知曲线在点P(x0,y0)处的切线方程为y-y0=(1+)(x-x0),即y-(x0-)=(1+)(x-x0).令x=0,得y=-,从而得切线与直线x=0交点坐标为.令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部