第1讲分类加法计数原理与分步乘法计数原理基础巩固题组(建议用时:40分钟)一、选择题1.从3名男同学和2名女同学中选1人主持本班某次主题班会,不同选法种数为()A.6种B.5种C.3种D.2种解析由分类加法计算原理知总方法数为3+2=5(种).答案B2.4位同学从甲、乙、丙3门课程中各选修1门,则恰有2人选修课程甲的不同选法有()A.12种B.24种C.30种D.36种解析分三步,第一步先从4位同学中选2人选修课程甲.共有C种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C×2×2=24(种).答案B3.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6解析三位数可分成两种情况:(1)奇偶奇;(2)偶奇奇.对于(1),个位(3种选择),十位(2种选择),百位(2种选择),共12种;对于(2),个位(3种选择),十位(2种选择),百位(1种选择),共6种,即12+6=18.故选B.答案B4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()A.18B.10C.16D.14解析分两类:第一类:M中元素作横坐标,共3×2=6个点,第二类:N中元素作横坐标,共4×2=8个点,由分类加法原理知点的个数共6+8=14个.答案D5.(·四川卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga-lgb的不同值的个数是()A.9B.10C.18D.20解析由于lga-lgb=lg(a>0,b>0),lg∴有多少个不同的值,只需看不同值的个数.从1,3,5,7,9中任取两个作为有A种,又与相同,与相同,∴lga-lgb的不同值的个数有A-2=18.答案C二、填空题6.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).解析数字2,3至少都出现一次,包括以下情况:“2”出现1次“,3”出现3次,共可组成C=4(个)四位数.“2”出现2次“,3”出现2次,共可组成C=6(个)四位数.“2”出现3次“,3”出现1次,共可组成C=4(个)四位数.综上所述,共可组成14个这样的四位数.答案147.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).解析第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案368.将数字1,2,3,4填入标号为1,2,3,4的四个方格中,每格填一个数,则每个方格的标号与所填数字均不相同的填法有________种.解析编号为1的方格内填数字2,共有3种不同填法;编号为1的方格内填数字3,共有3种不同填法;编号为1的方格内填数字4,共有3种不同填法.于是由分类加法计数原理,得共有3+3+3=9(种)不同的填法.答案9三、解答题9.有一项活动需在3名老师,6名男同学和8名女同学中选人参加,(1)若只需一人参加,有多少种不同选法?(2)若需一名老师,一名学生参加,有多少种不同选法?(3)若需老师,男同学、女同学各一人参加,有多少种不同选法?解(1)只需一人参加,可按老师、男同学、女同学分三类各自有3、6、8种方法,总方法数为3+6+8=17(种).(2)分两步,先选教师共3种选法,再选学生共6+8=14种选法,由分步乘法计数原理知,总方法数为3×14=42(种).(3)教师、男、女同学各一人可分三步,每步方法依次为3,6,8种.由分步乘法计数原理知方法数为3×6×8=144(种).10.“”电视台在欢乐在今宵节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众来信,甲箱中有30封,乙箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱中各确定一名幸运观众,有多少种不同结果?解分两类:(1)幸运之星在甲箱中抽,选定幸运之星,再在两箱内各抽一名幸运观众有30×29×20=17400(种).(2)幸运之星在乙箱中抽取,有20×19×30=11400(种).共有...