第2讲双曲线基础巩固题组(建议用时:40分钟)一、填空题1.(·日照二模)已知双曲线-=1(a>0,b>0)的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为________.解析由题意知圆心坐标为(5,0),即c=5,又e==,∴a2=5,b2=20,∴双曲线的标准方程为-=1.答案-=12.(·苏州一模)已知双曲线x2-ky2=1的一个焦点是(,0),则其离心率为________.解析由已知,得a=1,c=.∴e==.答案3.(·广州一模)已知双曲线-=1的右焦点为(,0),则该双曲线的渐近线方程为________.解析由题意得c=,所以9+a=c2=13,所以a=4.即双曲线方程为-=1,所以双曲线的渐近线为2x±3y=0.答案2x±3y=04.(·北京卷改编)双曲线x2-=1的离心率大于的充分必要条件是________.解析在双曲线x2-=1中,a=1,b=,则c=,离心率e==>,解得m>1.答案m>15.若双曲线-=1(a>0)的离心率为2,则a=______.解析 b=,∴c=,∴==2,∴a=1.答案16.(·成都模拟)已知双曲线的方程为-=1(a>0,b>2),双曲线的一个焦点到一条渐近线的距离为c(其中c为双曲线的半焦距长),则该双曲线的离心率为________.解析不妨取双曲线的右焦点(c,0),双曲线的渐近线为y=x,即bx-ay=0.则焦点到渐近线的距离为=c,即b=c,从而b2=c2=c2-a2,所以c2=a2,即e2=,所以离心率e=.答案7.(·郑州二模)设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于________.解析由可解得又由|F1F2|=10可得△PF1F2是直角三角形,则S△PF1F2=|PF1|×|PF2|=24.答案248.(·武汉诊断)已知双曲线-=1的一个焦点是(0,2),椭圆-=1的焦距等于4,则n=________.解析因为双曲线的焦点(0,2),所以焦点在y轴,所以双曲线的方程为-=1,即a2=-3m,b2=-m,所以c2=-3m-m=-4m=4,解得m=-1,所以椭圆方程为+x2=1,且n>0,椭圆的焦距为4,所以c2=n-1=4或1-n=4,解得n=5或-3(舍去).答案5二、解答题9.已知椭圆D:+=1与圆M:x2+(y-5)2=9,双曲线G与椭圆D有相同焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.解椭圆D的两个焦点为F1(-5,0),F2(5,0),因而双曲线中心在原点,焦点在x轴上,且c=5.设双曲线G的方程为-=1(a>0,b>0),∴渐近线方程为bx±ay=0且a2+b2=25,又圆心M(0,5)到两条渐近线的距离为r=3.∴=3,得a=3,b=4,∴双曲线G的方程为-=1.10.中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.解(1)由已知:c=,设椭圆长、短半轴长分别为a,b,双曲线半实、虚轴长分别为m,n,则解得a=7,m=3.∴b=6,n=2.∴椭圆方程为+=1,双曲线方程为-=1.(2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,所以|PF1|=10,|PF2|=4.又|F1F2|=2,∴cos∠F1PF2===.能力提升题组(建议用时:25分钟)一、填空题1.(·焦作二模)直线y=x与双曲线C:-=1(a>0,b>0)左右两支分别交于M、N两点,F是双曲线C的右焦点,O是坐标原点,若|FO|=|MO|,则双曲线的离心率等于________.解析由题意知|MO|=|NO|=|FO|,∴△MFN为直角三角形,且∠MFN=90°,取左焦点为F0,连接NF0,MF0,由双曲线的对称性知,四边形NFMF0为平行四边形.又 ∠MFN=90°,∴四边形NFMF0为矩形,∴|MN|=|F0F|=2c,又 直线MN的倾斜角为60°,即∠NOF=60°,∴∠NMF=30°,∴|NF|=|MF0|=c,|MF|=c,由双曲线定义知|MF|-|MF0|=c-c=2a,∴e==+1.答案+12.(·临沂联考)已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是________.解析由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF<即可.直线AB的方程为x=-c,代入双曲线方程得y...