电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮总复习 9.1 直线的方程题组训练 理 苏教版VIP免费

高考数学一轮总复习 9.1 直线的方程题组训练 理 苏教版_第1页
高考数学一轮总复习 9.1 直线的方程题组训练 理 苏教版_第2页
高考数学一轮总复习 9.1 直线的方程题组训练 理 苏教版_第3页
第九篇解析几何初步第1讲直线的方程基础巩固题组(建议用时:40分钟)一、填空题1.直线x-y+a=0(a为常数)的倾斜角为________.解析直线的斜率为k=tanα=,又因为α∈[0,π),所以α=.答案2.已知直线l经过点P(-2,5),且斜率为-.则直线l的方程为________.解析由点斜式,得y-5=-(x+2),即3x+4y-14=0.答案3x+4y-14=03.(·长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为________.解析∵kAC==1,kAB==a-3.由于A,B,C三点共线,所以a-3=1,即a=4.答案44.(·泰州模拟)直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=________.解析令x=0,得y=;令y=0,得x=-.则有-=2,所以k=-24.答案-245.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m=________.解析由题意可知2m2+m-3≠0,即m≠1且m≠-,在x轴上截距为=1,即2m2-3m-2=0,解得m=2或-.答案2或-6.(·佛山调研)直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足________.①ab>0,bc<0;②ab>0,bc>0;③ab<0,bc>0;④ab<0,bc<0.解析由题意,令x=0,y=->0;令y=0,x=->0.即bc<0,ac<0,从而ab>0.答案①7.(·淮阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析设直线的斜率为k,如图,过定点A的直线经过点B时,直线l在x轴上的截距为3,此时k=-1;过定点A的直线经过点C时,直线l在x轴的截距为-3,此时k=,满足条件的直线l的斜率范围是(-∞,-1)∪.答案(-∞,-1)∪8.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析设所求直线的方程为+=1,∵A(-2,2)在直线上,∴-+=1.①又因直线与坐标轴围成的三角形面积为1,∴|a|·|b|=1.②由①②可得(1)或(2)由(1)解得或方程组(2)无解.故所求的直线方程为+=1或+=1,即x+2y-2=0或2x+y+2=0为所求直线的方程.答案x+2y-2=0或2x+y+2=0二、解答题9.(·临沂月考)设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.解(1)当直线过原点时,该直线在x轴和y轴上的截距为0,当然相等.∴a=2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,得=a-2,即a+1=1,∴a=0,方程即为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.(2)将l的方程化为y=-(a+1)x+a-2,∴或∴a≤-1.综上可知a的取值范围是(-∞,-1].10.已知直线l过点M(2,1),且分别与x轴、y轴的正半轴交于A,B两点,O为原点,是否存在使△ABO面积最小的直线l?若存在,求出直线l的方程;若不存在,请说明理由.解存在.理由如下:设直线l的方程为y-1=k(x-2)(k<0),则A,B(0,1-2k),△AOB的面积S=(1-2k)=≥(4+4)=4.当且仅当-4k=-,即k=-时,等号成立,故直线l的方程为y-1=-(x-2),即x+2y-4=0.能力提升题组(建议用时:25分钟)一、填空题1.(·北京海淀一模)已知点A(-1,0),B(cosα,sinα),且|AB|=,则直线AB的方程为________.解析|AB|===,所以cosα=,sinα=±,所以kAB=±,即直线AB的方程为y=±(x+1),所以直线AB的方程为y=x+或y=-x-.答案y=x+或y=-x-2.若直线l:y=kx-与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是________.解析如图,直线l:y=kx-,过定点P(0,-),又A(3,0),∴kPA=,则直线PA的倾斜角为,满足条件的直线l的倾斜角的范围是.答案3.已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.解析直线方程可化为+y=1,故直线与x轴的交点为A(2,0),与y轴的交点为B(0,1),由动点P(a,b)在线段AB上,可知0≤b≤1,且a+2b=2,从而a=2-2b,故ab=(2-2b)b=-2b2+2b=-22+,由于0≤b≤1,故当b=时,ab取得最大值.答案二、解答题4.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.解由题意可得kOA=tan45°=1,kOB=tan(180°-30°)=-,所以直线lOA:y=x,lOB:y=-x,设A(m,m),B(-n,n),所以AB的中点C,由点C在y=x上,且A,P,B三点共线得解得m=,所以A(,).又P(1,0),所以kAB=kAP==,所以lAB:y=(x-1),即直线AB的方程为(3+)x-2y-3-=0.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部