——基础回扣练集合与常用逻辑用语(建议用时:60分钟)一、选择题1.(·深圳二次调研)已知集合A={0,1},则满足条件A∪B={2,0,1,3}的集合B共有().A.1个B.2个C.3个D.4个解析由题知B集合必须含有元素2,3,可以是{2,3},{2,1,3},{2,0,3},{2,0,1,3},共4个,故选D.答案D2.(·济南4月模拟)已知集合A={x||x-1|<2},B={x|log2x<2},则A∩B=().A.(-1,3)B.(0,4)C.(0,3)D.(-1,4)解析将两集合分别化简得A={x|-1<x<3},B={x|0<x<4},故结合数轴得A∩B={x|-1<x<3}∩{x|0<x<4}={x|0<x<3}.答案C3.(·滁州模拟)定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B的所有元素之和是().A.0B.2C.3D.6解析 z=xy,x∈A,y∈B,且A={1,2},B={0,2},∴z的取值有:1×0=0;1×2=2;2×0=0;2×2=4.故A*B={0,2,4}.∴集合A*B的所有元素之和为0+2+4=6.答案D4.(·陕西五校质检)已知两个非空集合A={x|x(x-3)<4},B={x|≤a},若A∩B=B,则实数a的取值范围是().A.(-1,1)B.(-2,2)C.[0,2)D.(-∞,2)解析解不等式x(x-3)<4,得-1<x<4,所以A={x|-1<x<4};又B是非空集合,所以a≥0,B={x|0≤x≤a2}.而A∩B=B⇔B⊆A,借助数轴可知a2<4,解得0≤a<2,故选C.答案C5.(·厦门质检)若集合P={1,2,3,4},Q={x|0<x<5,x∈R},则下列论断正确的是().A.x∈P是x∈Q的充分不必要条件B.x∈P是x∈Q的必要不充分条件C.x∈P是x∈Q的充分必要条件D.x∈P是x∈Q的既不充分也不必要条件解析P为Q的真子集,故P中元素一定在Q中,反之不成立.故选A.答案A6.(·湖南卷)“1<x<2”是“x<2”成立的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析当1<x<2时,必有x<2;而x<2时,如x=0,推不出1<x<2,所以“1<x<2”是“x<2”的充分不必要条件.答案A7.(2014·长沙模考(二))下列命题错误的是().A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.对命题p:任意x∈R,均有x2+x+1<0,则綈p为:存在x∈R,使得x2+x+1≥0C.“三个数a,b,c成等比数列”是“b=”的充分不必要条件D.“x>2”是“x2-3x+2>0”的充分不必要条件解析对于A,命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”,因此选项A正确.对于B,对命题p:任意x∈R,均有x2+x+1<0,则綈p为:存在x∈R,使得x2+x+1≥0,因此选项B正确.对于C,若a,b,c成等比数列,则b2=ac,当b<0时,b=-;若b=,有可能a=0,b=0,c=0,则a,b,c不成等比数列,因此“a,b,c成等比数列”是“b=”的既不充分也不必要条件.对于D,注意到由x>2得x2-3x+2=(x-1)·(x-2)>0;反过来,由x2-3x+2>0不能得知x>2,如取x=0时,x2-3x+2>0,但此时0<2,因此选项D正确.故选C.答案C8.(·深圳调研)下列命题为真命题的是().A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否命题为“若x<-1,则x2-2x-3≤0”D.已知命题p:∃x∈R,使得x2+x-1<0,则綈p:∀x∈R,使得x2+x-1>0解析对于A,“p真q假”时,p∨q为真命题,但p∧q为假命题,故A错;对于C,否命题应为“若x≥-1,则x2-2x-3≤0”,故C错;对于D,綈p应为“∀x∈R,使得x2+x-1≥0”,所以D错;故选B.答案B9.(·太原检测)已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是().A.(2+,+∞)B.(-∞,2+]C.[2,+∞)D.[6,+∞)解析≤0⇒0<x≤1⇒1<2x≤2,由题意知,22+2-m≤0,即m≥6,故选D.答案D10.已知数列{an}是等比数列,命题p:“若a1<a2<a3,则数列{an}是递增数列”,则在命题p及其逆命题、否命题和逆否命题中,真命题的个数为().A.1B.2C.3D.4解析若已知a1<a2<a3,则设数列{an}的公比为q,有a1<a1q<a1q2.当a1>0时,解得q>1,此时数列{an}是递增数列;当a1<0时,解得0<q<1,此时数列{an}也是递增数列.反之,若数列{an}是递增数列,显然有a1<a2<...