高考专题突破三高考中的数列问题1.(2017·苏州月考)数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}中连续的三项,则数列{bn}的公比为____.答案2解析设数列{an}的公差为d(d≠0),由a23=a1a7,得(a1+2d)2=a1(a1+6d),解得a1=2d,故数列{bn}的公比q=a3a1=a1+2da1=2a1a1=2.2.已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列1anan+1的前100项和为_____.答案100101解析设等差数列{an}的首项为a1,公差为d. a5=5,S5=15,∴a1+4d=5,5a1+-2d=15,∴a1=1,d=1,∴an=a1+(n-1)d=n.∴1anan+1=1nn+=1n-1n+1,∴数列1anan+1的前100项和为1-12+12-13+⋯+1100-1101=1-1101=100101.3.(2016·南通、淮安模拟)在等比数列{an}中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是________.答案149解析因为{an}为等比数列,且a2=1,所以a1=1q,a3=q,a5=q3,由a1,4a3,7a5成等差数列得8q=1q+7q3,解得q2=1(舍去)或q2=17,故a6=a2q4=149.4.(2015·课标全国Ⅱ)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=_____.答案-1n解析由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,因为Sn≠0,所以Sn+1-SnSnSn+1=1,即1Sn+1-1Sn=-1,故数列1Sn是以1S1=-1为首项,-1为公差的等差数列,所以1Sn=-1-(n-1)=-n,所以Sn=-1n.5.已知数列{an}的前n项和为Sn,对任意n∈N*都有Sn=23an-13,若1