第五节古典概型质量铸就品牌品质赢得未来数学结束第五节古典概型[课前·双基落实]基础盘查1.(1)×(2)×(3)√2.23243.解析:从甲、乙、丙3人中随机选派2人参加某项活动,有甲、乙,甲、丙,乙、丙三种可能,则甲被选中的概率为23.答案:234.解析:抛掷两颗相同的正方体骰子共有36种等可能的结果:(1,1),(1,2),(1,3),…,(6,6).点数积等于12的结果有:(2,6),(3,4),(4,3),(6,2),共4种,故所求事件的概率为436=19.答案:19第五节古典概型质量铸就品牌品质赢得未来数学结束[课堂·考点突破]考点一1.解析:基本事件为(1,2),(1,3),(1,4),(2,1)(2,3),(2,4),…,(4,3),共12个,符合条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6个,因此使得a2≥4b的概率是12.答案:C2.解析:能组成的两位数有12,13,20,30,21,31,共6个,其中的奇数有13,21,31,共3个,因此所组成的两位数为奇数的概率是36=12,故选C.答案:C第五节古典概型质量铸就品牌品质赢得未来数学结束3.解:(1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件A为“采访该团2人,恰有1人持银卡”,则P(A)=C16C130C236=27,所以采访该团2人,恰有1人持银卡的概率是27.(2)设事件B为“采访该团2人,持金卡与持银卡人数相等”,可以分为事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况.则P(B)=P(B1)+P(B2)=C221C236+C19C16C236=44105,所以采访该团2人,持金卡与持银卡人数相等的概率是44105.第五节古典概型质量铸就品牌品质赢得未来数学结束考点二[多角探明]1.解:由题意,得(x,y)所有的基本事件为(-1,1),(-1,3),(-1,9),(1,1),(1,3),(1,9),(3,1),(3,3),(3,9),共9个.(1)设“a∥b”为事件A,则xy=-3.事件A包含的基本事件有(-1,3),共1个.故a∥b的概率为P(A)=19.(2)设“a⊥b”为事件B,则y=3x.事件B包含的基本事件有(1,3),(3,9),共2个.故a⊥b的概率为P(B)=29.第五节古典概型质量铸就品牌品质赢得未来数学结束2.解析:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足2aa2+b2≤2,a2≤b2的数组(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=712.答案:712第五节古典概型质量铸就品牌品质赢得未来数学结束3.解:(1)f′(x)=ax+b,由题意f′(-1)≤0,即b≤a,而(a,b)共有(2,1),(2,3),(4,1),(4,3)四种,满足b≤a的有3种,故概率为34.(2)由(1)可知,函数f(x)共有4种可能,从中随机抽取两个,有6种抽法.∵函数f(x)在(1,f(1))处的切线的斜率为f′(1)=a+b,∴这两个函数中的a与b之和应该相等,而只有(2,3),(4,1)这1组满足,∴概率为16.第五节古典概型质量铸就品牌品质赢得未来数学结束4.解:(1)根据题意,(0.0024+0.0036+x+0.0044+0.0024+0.0012)×50=1,解得x=0.0060.(2)由题知拔尖工共有3人,熟练工共有6人.抽取容量为6的样本,则其中拔尖工有2人,熟练工为4人.可设拔尖工为A1,A2,熟练工为B1,B2,B3,B4.则从样本中任抽2个的可能有:A1B1,A1B2,A1B3,A1B4,A2B1,A2B2,A2B3,A2B4,A1A2,B1B2,B1B3,B1B4,B2B3,B2B4,B3B4,共15种,至少有一个是拔尖工的可能有A1B1,A1B2,A1B3,A1B4,A2B1,A2B2,A2B3,A2B4,A1A2,共9种.故至少有一个拔尖工的概率是915=35.谢谢观看