2015-2016学年广西桂林十八中高三(上)第三次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合(∁UM)∩N可以表示为()A.{1}B.{1,2}C.{1,2,3}D.{1,2,3,4}2.若复数(α∈R,i为虚数单位)是纯虚数,则实数α的值为()A.﹣6B.﹣4C.4D.63.已知等差数列{an}的首项a1=1,公差d≠0,且a2是a1与a4的等比中项,则d=()A.1B.2C.3D.44.已知x∈(0,π),且sin2x=,则sin(+x)=()A.B.﹣C.D.﹣5.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.有4名优秀学生A,B,C,D全部被保送到甲,乙,丙3所学校,每所学校至少去一名,则不同的保送方案共有()A.26种B.32种C.36种D.56种7.已知不等式组,构成平面区域Ω(其中x,y是变量),则目标函数z=3x+6y的最小值为()A.﹣3B.3C.﹣6D.68.执行如图所示的程序框图,则输出的结果是()A.14B.15C.16D.179.△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•的取值范围是()A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]10.已知函数f(x)=3sinωxcosx+cos2ωx(ω>0)的最小正周期为,将函数f(x)的图象向左平移φ(φ>0)个单位后,得到的函数图形的一条对称轴为x=,则φ的值不可能为()A.B.C.D.11.如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=xB.y2=3xC.y2=xD.y2=9x12.已知a>0,函数f(x)=eaxsinx(x∈[0,+∞)).记xn为f(x)的从小到大的第n(n∈N*)个极值点,则数列{f(xn)}是()A.等差数列,公差为eaxB.等差数列,公差为﹣eaxC.等比数列,公比为eaxD.等比数列,公比为﹣eax二、填空题:本大题共4小题,每小题5分.13.二项式(﹣x2)10的展开式中的常数项是.14.如图,设D是图中边长为4的正方形区域,E是D内函数y=x2图象下方的点构成的区域.向D中随机投一点,则该点落入E中的概率为.15.A、B、C、D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=4,AB=2,则该球的表面积为.16.已知数列{an}的前n项和Sn=2an﹣2n+1,若不等式2n2﹣n﹣3<(5﹣λ)an对∀n∈N+恒成立,则整数λ的最大值为.三、解答题:解答应写出文字说明.证明过程或演算步骤17.如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.(1)求船的航行速度是每小时多少千米?(2)又经过一段时间后,船到达海岛的正西方向的D、处,问此时船距岛A有多远?18.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业8040120小型企业240200440合计320240560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.0500.0250.010k03.8415.0246.63519.如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为棱PC上的动点,且=λ(λ∈[0,1]).(Ⅰ)求证:BC⊥PC;(Ⅱ)试确定λ的值,使得二面角P﹣AD﹣M的平面角余弦值为.20.已知抛物线Γ:y2=2px(p>0)的焦点到准线的距离为2.(Ⅰ)求p的值;(Ⅱ)如图所示,直线l1与抛物线Γ相交于A、B两点,C为抛物线Γ上异于A、B的一点,且AC⊥x轴,过B作AC的垂线,垂足为M,过C作直线l2交直线BM于点N,设l1,l2的斜率分别为k1,k2,且k1k2=1.(i)线段|MN|的长是否为定值?若是定值,请求出定值;若不是定值,请说明理由;(ii)求证:A,B,C,N四点...