专题跟踪训练(十五)一、选择题1.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点[解析]如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.[答案]C2.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A.若l⊥m,l⊥n,且m,n⊂α,则l⊥αB.若平面α内有不共线的三点到平面β的距离相等,则α∥βC.若m⊥α,m⊥n,则n∥αD.若m∥n,n⊥α,则m⊥α[解析]依次判断各选项,A错误,只有直线m,n相交时命题才成立;B错误,两平面可相交,其中两点在交线一侧,且与平面平行,另一点在异侧,且斜线段相等时,三点到平面距离相等;C错误,直线n可在平面α内;D正确,空间想象即可.[答案]D3.(2014·辽宁卷)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α[解析]解法一:若m∥α,n∥α,则m,n可能平行、相交或异面,A错;若m⊥α,n⊂α,则m⊥n,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m⊥α,m⊥n,则n∥α或n⊂α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,D错.解法二:如图,在正方体ABCD-A′B′C′D′中,用平面ABCD表示α.A项中,若m为A′B′,n为B′C′,满足m∥α,n∥α,但m与n是相交直线,故A错.B项中,m⊥α,n⊂α,∴m⊥n,这是线面垂直的性质,故B正确.C项中,若m为AA′,n为AB,满足m⊥α,m⊥n,但n⊂α,故C错.D项中,若m为A′B′,n为B′C′,满足m∥α,m⊥n,但n∥α,故D错.[答案]B4.(2014·广东卷)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定[解析]如图,在长方体ABCD-A1B1C1D1中,记l1=DD1,l2=DC,l3=DA,若l4=AA1,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.若l4=DC1,也满足条件,可以排除选项B.故选D.[答案]D5.(2015·福建卷)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[解析]由“m⊥α且l⊥m”推出“l⊂α或l∥α”,但由“m⊥α且l∥α”可推出“l⊥m”,所以“l⊥m”是“l∥α”的必要而不充分条件,故选B.[答案]B6.(2015·河南郑州第二次质量预测)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是()A.BM是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE[解析]延长CB至F,使CB=BF,连接A1F,可知MB为△A1FC的中位线,即MB=A1F,因为在翻折过程中A1F为定值,所以BM为定值,A正确.点A1绕DE的中点、以定长为半径做圆周运动,点M运动的轨迹与点A1相似,也是圆周运动,所以点M在某个球面上运动,B正确.由题知DE⊥EC,若DE⊥A1C,则直线DE⊥平面ECA1,于是∠DEA1=90°,又因为∠DAE=90°,即∠DA1E=90°,此时在一个三角形中有两个直角,所以DE不可能垂直于A1C,C不正确.因为MB綊A1F,由图可知A1F在平面A1DE内,所以存在某个位置使得MB∥平面A1DE,D正确.[答案]C二、填空题7.(2015·兰州诊断)在直三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=1,则点A到平面A1BC的距离为________.[解析]解法一:如图,设D为BC的中点,连接AD、A1D、A1C、A1B,过A作A1D的垂线,垂足为E,则BC⊥A1D,BC⊥AD,所以BC⊥平面A1AD,则BC⊥AE.又AE⊥A1D,所以AE⊥平面A1BC,所以AE即为所求距离,由条件可得AD=AB=,A...