2018年高考数学一轮复习第八章解析几何第49讲直线与圆、圆与圆的位置关系实战演练理1.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A)A.-B.-C.D.2解析:圆的方程可化为(x-1)2+(y-4)2=4,则圆心坐标为(1,4),圆心到直线ax+y-1=0的距离为=1,解得a=-.故选A.2.(2015·重庆卷)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=(C)A.2B.4C.6D.2解析:圆C的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径r=2,由直线l是圆C的对称轴,知直线l过点C,所以2+a×1-1=0,a=-1,所以A(-4,-1),于是|AC|2=40,所以|AB|===6.故选C.3.(2016·全国卷Ⅲ)已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则=4.解析:圆心(0,0)到直线x-y+6=0的距离d==3,|AB|=2=2,过C作CE⊥BD于E,因为直线l的倾斜角为30°,所以|CD|====4.4.(2015·江苏卷)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x-1)2+y2=2.解析:由mx-y-2m-1=0可得m(x-2)=y+1,易知该直线过定点(2,-1),当圆与直线相切于点(2,-1)时,圆的半径最大,此时半径r满足r2=(1-2)2+(0+1)2=2,故所求圆的标准方程为(x-1)2+y2=2.1