第2课时范围、最值问题题型一范围问题例1(2015·天津)已知椭圆+=1(a>b>0)的左焦点为F(-c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.解(1)由已知,有=,又由a2=b2+c2,可得a2=3c2,b2=2c2.设直线FM的斜率为k(k>0),F(-c,0),则直线FM的方程为y=k(x+c).由已知,有2+2=2,解得k=.(2)由(1)得椭圆方程为+=1,直线FM的方程为y=(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解得x=-c或x=c.因为点M在第一象限,可得M的坐标为.由|FM|==.解得c=1,所以椭圆的方程为+=1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=,即直线FP的方程为y=t(x+1)(x≠-1),与椭圆方程联立,消去y,整理得2x2+3t2(x+1)2=6,又由已知,得t=>,解得-<x<-1或-1<x<0.设直线OP的斜率为m,得m=,即y=mx(x≠0),与椭圆方程联立,整理得m2=-.①当x∈时,有y=t(x+1)<0,因此m>0,于是m=,得m∈.②当x∈(-1,0)时,有y=t(x+1)>0.因此m<0,于是m=-,得m∈.综上,直线OP的斜率的取值范围是∪.思维升华解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.INCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE1"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\数学人教版\\word\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\数学人教版\\word\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\马玉娜\\马玉娜\\2017\\大一轮\\大一轮一校\\数学人教\\程亚杰\\word\\跟踪训练1.TIF"\*MERGEFORMATINET(2016·黄冈模拟)已知椭圆C:+=1(a>b>0)与双曲线-y2=1的离心率互为倒数,且直线x-y-2=0经过椭圆的右顶点.(1)求椭圆C的标准方程;(2)设不过原点O的直线与椭圆C交于M,N两点,且直线OM,MN,ON的斜率依次成等比数列,求△OMN面积的取值范围.解(1) 双曲线的离心率为,∴椭圆的离心率e==.又 直线x-y-2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,∴椭圆方程为+y2=1.(2)由题意可设直线的方程为y=kx+m(k≠0,m≠0),M(x1,y1),N(x2,y2).联立消去y,并整理得(1+4k2)x2+8kmx+4(m2-1)=0,则x1+x2=-,x1x2=,于是y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.又直线OM,MN,ON的斜率依次成等比数列,故·==k2⇒-+m2=0.由m≠0得k2=,解得k=±.又由Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,得0