第二章测评B(高考体验卷)(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析:由立体几何基本知识知,B选项为公理2,C选项为公理1,D选项为公理3,A选项不是公理.答案:A2.设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析:当m⊥n,n∥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故A选项错误;当m∥β,β⊥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故选项B错误;当m⊥β,n⊥β,n⊥α时,必有α∥β,从而m⊥α,故选项C正确;在如图所示的正方体ABCD-A1B1C1D1中,取m为B1C1,n为CC1,β为平面ABCD,α为平面ADD1A1,这时满足m⊥n,n⊥β,β⊥α,但m⊥α不成立,故选项D错误.答案:C3.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析:如图,在正方体A1B1C1D1-ABCD中,对于A,设l为AA1,平面B1BCC1,平面DCC1D1为α,β.A1A∥平面B1BCC1,A1A∥平面DCC1D1,而平面B1BCC1∩平面DCC1D1=C1C;对于C,设l为A1A,平面ABCD为α,平面DCC1D1为β.A1A⊥平面ABCD,A1A∥平面DCC1D1,而平面ABCD∩平面DCC1D1=DC;对于D,设平面A1ABB1为α,平面ABCD为β,直线D1C1为l,平面A1ABB1⊥平面ABCD,D1C1∥平面A1ABB1,而D1C1∥平面ABCD.故A,C,D都是错误的.而对于B,根据垂直于同一直线的两平面平行,知B正确.答案:B4已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α解析:对A:m,n还可能异面、相交,故A不正确.对C:n还可能在平面α内,故C不正确.对D:n还可能在α内,故D不正确.对B:由线面垂直的定义可知正确.答案:B5.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析:因为m⊥α,l⊥m,l⊄α,所以l∥α.同理可得l∥β.又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.答案:D6.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A.B.C.D.解析:如图所示,由棱柱体积为,底面正三角形的边长为,可求得棱柱的高为.设P在平面ABC上投影为O,则可求得AO长为1,故AP长为=2.故∠PAO=,即PA与平面ABC所成的角为.答案:B7.在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°答案:A8.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β解析:选项A中,m与n还可能平行或异面,故不正确;选项B中,m与n还可能异面,故不正确;选项C中,α与β还可能平行或相交,故不正确;选项D中, m⊥α,m∥n,∴n⊥α.又n∥β,∴α⊥β.故选D.答案:D9.设l是直线,α,β是两个不同的平面,()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β解析:A选项中由l∥α,l∥β不能确定α与β的位置关系,C选项中由α⊥β,l⊥α可推出l∥β或l⊂β,D选项由α⊥β,l∥α不能确定l与β的位置关系.答案:B10下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面...