§8.5直线、平面垂直的判定与性质考纲解读考点内容解读要求高考示例常考题型预测热度1.直线与平面垂直的判定与性质①以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.理解以下判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明:垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.②能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题掌握2016课标全国Ⅱ,19;2015北京,17;2015湖南,19;2014广东,18;2013四川,19解答题★★★2.平面与平面垂直的判定与性质掌握2017课标全国Ⅰ,18;2017课标全国Ⅲ,19;2016课标全国Ⅰ,18;2015课标Ⅰ,18;2014江西,19解答题★★★分析解读1.掌握直线与平面垂直的判定定理和性质定理.2.会运用直线与平面、平面与平面垂直的判定定理和性质定理解决简单的应用问题与证明问题.3.掌握转化的思想方法.4.高考中常以解答题的形式呈现,考查线线、线面、面面垂直的转化思想,分值约为12分,属中档题.五年高考考点一直线与平面垂直的判定与性质1.(2016课标全国Ⅱ,19,12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=.(1)证明:D'H⊥平面ABCD;(2)求二面角B-D'A-C的正弦值.解析(1)证明:由已知得AC⊥BD,AD=CD.又由AE=CF得=,故AC∥EF.因此EF⊥HD,从而EF⊥D'H.(2分)由AB=5,AC=6得DO=BO==4.由EF∥AC得==.所以OH=1,D'H=DH=3.于是D'H2+OH2=32+12=10=D'O2,故D'H⊥OH.(4分)又D'H⊥EF,而OH∩EF=H,所以D'H⊥平面ABCD.(5分)(2)如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),1=(3,-4,0),=(6,0,0),=(3,1,3).(6分)设m=(x1,y1,z1)是平面ABD'的法向量,则即所以可取m=(4,3,-5).(8分)设n=(x2,y2,z2)是平面ACD'的法向量,则即所以可取n=(0,-3,1).(10分)于是cos
===-,sin=.因此二面角B-D'A-C的正弦值是.(12分)2.(2015北京,17,14分)如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.解析(1)证明:因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO⊂平面AEF,所以AO⊥平面EFCB.所以AO⊥BE.(2)取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,2则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos==-.由题设知二面角F-AE-B为钝角,所以它的余弦值为-.(3)因为BE⊥平面AOC,所以BE⊥OC,即·=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以·=-2(a-2)-3(a-2)2.由·=0及0