【大高考】2017版高考数学一轮总复习第14章不等式选讲AB卷文新人教A版1.(2016·新课标全国Ⅰ,24)已知函数f(x)=|x+1|-|2x-3|.(1)在图中画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解(1)f(x)=y=f(x)的图象如图所示.(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5,故f(x)>1的解集为{x|11的解集为.2.(2016·新课标全国Ⅱ,24)已知函数f(x)=+,M为不等式f(x)<2的解集.(1)求M;(2)证明:当a,b∈M时,|a+b|<|1+ab|.(1)解f(x)=当x≤-时,由f(x)<2得-2x<2,解得x>-1;当-1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是[2,+∞).4.(2015·新课标全国Ⅱ,24)设a,b,c,d均为正数,且a+b=c+d.证明:(1)若ab>cd,则+>+;(2)+>+是|a-b|<|c-d|的充要条件.证明(1)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得+>+.②若+>+,则(+)2>(+)2,即a+b+2>c+d+2.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,+>+是|a-b|<|c-d|的充要条件.5.(2015·新课标全国Ⅰ,24)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.解(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-10,解得0,解得1≤x<2.所以f(x)>1的解集为.(2)由题设可得,f(x)=所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a+1,0),C(a,a+1),△ABC的面积为(a+1)2.由题设得(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).6.(2014·新课标全国Ⅰ,24)若a>0,b>0,且+=.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.解(1)由=+≥,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.7.(2014·新课标全国Ⅱ,24)设函数f(x)=|x+|+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.(1)证明由a>0,有f(x)=|x+|+|x-a|≥|x+-(x-a)|=+a≥2.当且仅当a=1时,等号成立,所以f(x)≥2.(2)解f(3)=|3+|+|3-a|.当a>3时,f(3)=a+,由f(3)<5得3<a<.当0<a≤3时,f(3)=6-a+,由f(3)<5得<a≤3.综上,a的取值范围是.8.(2013·新课标全国Ⅰ,24)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.解(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=从图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈都成立.故-≥a-2,即a≤.从而a的取值范围是.9.(2013·新课标全国Ⅱ,24)设a,b,c均...