课时规范练45双曲线基础巩固组1.已知双曲线=1(a>0)的离心率为2,则a=()A.2B.C.D.12.(2017辽宁抚顺重点校一模,文8)当双曲线M:=1(-2≤m<0)的焦距取得最小值时,双曲线M的渐近线方程为()A.y=±xB.y=±xC.y=±2xD.y=±x导学号〚24190785〛3.(2017河南濮阳一模,文11)双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作x轴的垂线交双曲线于A,B两点,若∠AF2B<,则双曲线离心率的取值范围是()A.(1,)B.(1,)C.(1,2)D.(,3)4.已知双曲线=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为()A.=1B.=1C.-y2=1D.x2-=15.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若<0,则y0的取值范围是()A.B.C.D.6.(2017河北武邑中学一模,文6)已知双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A.=1B.=1C.=1D.=17.(2017天津,文5)已知双曲线=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.=1B.=1C.-y2=1D.x2-=18.(2017安徽淮南一模,文11)已知点F1,F2是双曲线C:=1(a>0,b>0)的左、右焦点,O为坐标原点,点P在双曲线C的右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线C的离心率的取值范围为()A.(1,+∞)B.C.D.导学号〚24190786〛9.(2017辽宁大连一模,文15)过双曲线=1(a>0,b>0)的右焦点F且斜率为1的直线与渐近线有且只有一个交点,则双曲线的离心率为.10.已知方程=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是.11.(2017江苏无锡一模,8)在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线=1的右焦点,则双曲线的离心率为.综合提升组12.(2017辽宁沈阳一模,文5)设F1和F2为双曲线=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是()A.y=±xB.y=±xC.y=±xD.y=±x13.(2017广西桂林一模,文11)已知双曲线C:=1(a>0,b>0)的右焦点为F(c,0),圆F:(x-c)2+y2=c2,直线l与双曲线C的一条渐近线垂直且在x轴上的截距为a.若圆F被直线l所截得的弦长为c,则双曲线的离心率为()A.B.C.2D.3导学号〚24190787〛14.(2017河北张家口4月模拟,文12)已知A,B为双曲线=1(a>0,b>0)的左、右顶点,F1,F2为其左、右焦点,双曲线的渐近线上一点P(x0,y0)(x0<0,y0>0)满足=0,且∠PBF1=45°,则双曲线的离心率为()A.B.C.D.15.(2017江苏,8)在平面直角坐标系xOy中,双曲线-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.16.(2017山东,文15)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.创新应用组17.(2017石家庄二中模拟,文12)已知直线l1与双曲线C:=1(a>0,b>0)交于A,B两点,且AB中点M的横坐标为b,过点M且与直线l1垂直的直线l2过双曲线C的右焦点,则双曲线的离心率为()A.B.C.D.导学号〚24190788〛18.(2017湖北武昌1月调研,文11)已知F1,F2是椭圆与双曲线的公共焦点,M是它们的一个公共点,且|MF1|>|MF2|,线段MF1的垂直平分线过点F2,若椭圆的离心率为e1,双曲线的离心率为e2,则的最小值为()A.6B.3C.D.课时规范练45双曲线1.D由已知得=2,且a>0,解得a=1,故选D.2.C由题意,c2=m2+2m+6=(m+1)2+5,当m=-1时,焦距2c取得最小值,则双曲线的方程为x2-=1,其渐近线方程为y=±2x.3.A由题意,将x=-c代入双曲线的方程,得y2=b2,∴|AB|=. 过焦点F1且垂直于x轴的弦为AB,∠AF2B<,∴tan∠AF2F1=,e=>1.∴e-.解得e∈(1,),故选A.4.D由题意知,双曲线=1(a>0,b>0)的渐近线方程为y=±x.因为该双曲线的渐近线与圆(x-2)2+y2=3相切,所以,解得b2=3a2.又因为c2=a2+b2=4,所以a2=1,b2=3.故所求双曲线的方程为x2-=1.5.A由条件知F1(-,0),F2(,0),∴=(--x0,-y0),=(-x0,-y0),∴-3<0.①又=1,∴=2+2.代入①得,∴-0,b>0)的右焦点为F(c,0),点A在双曲线的渐近线上,且△OAF是边长为2的等边三角形,不妨...