课下层级训练(四十五)椭圆的概念及其性质[A级基础强化训练]1.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1A[由题意及椭圆的定义知4a=4,则a=,又==,∴c=1,∴b2=2,∴C的方程为+=1.]2.(2018·广东惠州调研)“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件C[把椭圆方程化成+=1.若m>n>0,则>>0.所以椭圆的焦点在y轴上.反之,若椭圆的焦点在y轴上,则>>0即有m>n>0.故为充要条件.]3.设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为()A.4B.3C.2D.5A[由题意知|OM|=|PF2|=3,∴|PF2|=6,∴|PF1|=2a-|PF2|=10-6=4.]4.若点O和点F分别为椭圆+=1的中心和左焦点,若P为椭圆上的任意一点,则OP·FP的最大值为()A.2B.3C.6D.8C[由题意知,O(0,0),F(-1,0),设P(x,y),则OP=(x,y),FP=(x+1,y),∴OP·FP=x(x+1)+y2=x2+y2+x.又 +=1,∴y2=3-x2,∴OP·FP=x2+x+3=(x+2)2+2. -2≤x≤2,∴当x=2时,OP·FP有最大值6.]5.已知椭圆+=1(a>b>0)的右顶点和上顶点分别为A,B,左焦点为F.以原点O为圆心的圆与直线BF相切,且该圆与y轴的正半轴交于点C,过点C的直线交椭圆于M,N两点.若四边形FAMN是平行四边形,则该椭圆的离心率为()A.B.C.D.A[ 圆O与直线BF相切,∴圆O的半径为,即|OC|=, 四边形FAMN是平行四边形,∴点M的坐标为,代入椭圆方程得+=1,∴5e2+2e-3=0,又0b>0)的一个焦点是圆x2+y2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为__________.(-5,0)[ 圆的标准方程为(x-3)2+y2=1,∴圆心坐标为(3,0),∴c=3.又b=4,∴a==5. 椭圆的焦点在x轴上,∴椭圆的左顶点为(-5,0).]7.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为__________.7[由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.]8.已知椭圆的长轴长为10,两焦点F1,F2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P为短轴的一个端点,求△F1PF2的面积.解(1)设椭圆的标准方程为+=1(a>b>0),依题意得因此a=5,b=4,所以椭圆的标准方程为+=1.(2)易知|yP|=4,又c=3,所以S△F1PF2=|yP|×2c=×4×6=12.9.已知椭圆x2+(m+3)y2=m(m>0)的离心率e=,求m的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解椭圆方程可化为+=1,m>0. m-=>0,∴m>,∴a2=m,b2=,c==.由e=,得=,∴m=1.∴椭圆的标准方程为x2+=1,∴a=1,b=,c=.∴椭圆的长轴长和短轴长分别为2a=2和2b=1,焦点坐标为F1,F2,四个顶点的坐标分别为A1(-1,0),A2(1,0),B1,B2.[B级能力提升训练]10.如图,椭圆+=1的左、右焦点分别为F1,F2,P点在椭圆上,若|PF1|=4,∠F1PF2=120°,则a的值为()A.2B.3C.4D.5B[b2=2,c=,故|F1F2|=2,又|PF1|=4,|PF1|+|PF2|=2a,|PF2|=2a-4,由余弦定理得cos120°==-,化简得8a=24,即a=3.]11.(2019·山东临沂月考)过椭圆+=1的中心任意作一条直线交椭圆于P,Q两点,F是椭圆的一个焦点,则△PQF周长的最小值是()A.14B.16C.18D.20C[如图,设F1为椭圆的左焦点,右焦点为F2,根据椭圆的对称性可知|F1Q|=|PF2|,|OP|=|OQ|,所以△PQF1的周长为|PF1|+|F1Q|+|PQ|=|PF1|+|PF2|+2|PO|=2a+2|PO|=10+2|PO|,易知2|OP|的最小值为椭圆的短轴长,即点P,Q为椭圆的上下顶点时,△PQF1即△PQF的周长取得最小值为10+2×4=18.]12.(2019·河北石家庄质检)椭圆+y2=1的左,右焦点分别为F1,F2,点P为椭圆上一动点,若∠F1PF2为钝角,则点P的横坐标的取值范围是__________.[设椭圆上一点P的坐标为(x,y),则F1P=(x+,y),F2P=(x...