吉林省长春市东北师大附中2014-2015学年高一上学期11月月考数学试卷一、选择题:本大题12分,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)若集合,,则A∩B=()A.B.C.∅D.12.(4分)下列函数中,与函数有相同定义域的是()A.f(x)=lnxB.C.f(x)=x3D.f(x)=ex3.(4分)给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④4.(4分)已知0<a<1,则函数y=|logax|﹣a|x|零点的个数是()A.1个B.2个C.3个D.1个或2个或3个5.(4分)在同一平面直角坐标系中,函数f(x)=2x+1与g(x)=21﹣x的图象关于()A.直线x=1对称B.x轴对称C.y轴对称D.直线y=x对称6.(4分)已知(0.71.3)m<(1.30.7)m,则实数m的取值范围是()A.(0,+∞)B.(1,+∞)C.(0,1)D.(﹣∞,0)7.(4分)用二分法求函数f(x)=lnx+2x﹣6在区间(2,3)零点近似值,至少经过()次二分后精确度达到0.1.A.2B.3C.4D.58.(4分)若函数的图象与x轴有公共点,则m的取值范围是()A.m≤﹣1B.﹣1≤m<0C.m≥1D.0<m≤19.(4分)设函数g(x)=x2﹣2(x∈R),f(x)=,则f(x)的值域是()A.∪(1,+∞)B.∪(2,+∞)10.(4分)不等式||<x的解集是()A.{x|0x<1}∪{x|x>1}B.{x|1﹣<x<1}∪{x|x>1+}C.{x|﹣1x<0}D.{x|x>1+}11.(4分)已知函数f(x)=lg(2x﹣b)(b为常数),若x∈上为减函数,比较a=fb=f(),c=f(log2)的大小()A.a<b<cB.b<c<aC.a<c<bD.b<a<c二、填空题:(本大题共四个小题,每小题4分)13.(4分)若函数f(x)的单调递增区间是,则函数f(x+5)的单调递增区间是.14.(4分)函数y=log0.5(x2﹣2x)的单调递增区间是.15.(4分)函数f(x)=ax+2a﹣1在(﹣1,1)内存在一个零点,则a的取值集合是.16.(4分)对于定义在R上的函数f(x),有下述四个命题,其中正确命题序号为.①若函数f(x)是奇函数,则f(x﹣1)的图象关于点A(1,0)对称;②若对x∈R,有f(x+1)=f(x﹣1),则y=f(x)直线x=1对称;③若函数f(x﹣1)关于直线x=1对称,则函数f(x)为偶函数;④函数f(x+1)与函数f(1﹣x)直线x=1对称.三、解答题:本大题共6个小题,解答应写出文字说明,证明过程或演算步骤17.(8分)(Ⅰ)计算:(lg2)2+lg2•lg50+lg25;(Ⅱ)记函数f(x)=lg(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N,求M∪N.18.(8分)已知函数f(x)是R上的奇函数,当x∈(0,+∞)时,f(x)=2x+x,求f(x)的解析式.19.(10分)已知函数f(x)=b•ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x);(2)若不等式()x+()x﹣m≥0在x∈(﹣∞,1]时恒成立,求实数m的取值范围.20.(10分)设不等式x2﹣2ax+a+2≤0的解集为M,若M⊆,求实数a的范围.21.(10分)已知函数f(x)=2x﹣.(Ⅰ)若f(x)=2,求x的值;(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈恒成立,求实数m的取值范围.22.(10分)已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数(1)求k的值;(2)设g(x)=log4(a•2x﹣a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.吉林省长春市东北师大附中2014-2015学年高一上学期11月月考数学试卷参考答案与试题解析一、选择题:本大题12分,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)若集合,,则A∩B=()A.B.C.∅D.1考点:交集及其运算.专题:计算题.分析:集合A表示的是函数的值域,求出幂函数的值域即集合A,集合B表示的函数的定义域,令被开方数大于等于0求出解集即集合B;利用交集的定义求出A∩B.解答:解: ={y|﹣1≤y≤1}集合={x|x≤1}∴A∩B=故选B.点评:本题考查集合的表示法,考查利用交集的定义求两个集合的交集.本题的易错点是认不清表示定义域与表示值域的区别.2.(4分)下列函数中,与函数有相同定义域的是()A.f(x)=lnxB.C.f(x)=x3D.f(x)=ex考点:函数的定义域及其求法...