模块综合测评(二)满分:150分时间:120分钟一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知S=,T={x|x2-(2a+1)x+a2+a≥0},若S∪T=R,则a的取值范围是()A.[-1,1]B.(-1,1]C.[0,1]D.(0,1]C[S={x|00恒成立.∴(3-2a)2-4a2=9-12a<0.∴a>.]5.等差数列{an},{bn}的前n项和分别为Sn,Tn,若=,则等于()A.B.C.D.B[在等差数列an,bn中,====.]6.已知在△ABC中,sinA∶sinB∶sinC=3∶2∶4,那么cosC的值为()【导学号:91432398】A.-B.C.-D.A[由题意知,sinA∶sinB∶sinC=a∶b∶c=3∶2∶4,设a=3k,b=2k,c=4k,∴cosC===-.]7.已知等差数列{an}的前n项和为18,若S3=1,an+an-1+an-2=3,则n等于()A.9B.21C.27D.36C[S3+an+an-1+an-2=4=3(a1+an),∴a1+an=,又Sn===18,∴n=27.]8.已知点P(x,y)满足条件则z=x-3y的最小值为()【导学号:91432399】A.9B.-6C.-9D.6B[作出可行域如图所示的阴影部分.由目标函数z=x-3y得:y=x-,∴-为直线在y轴上的截距.∴平移直线l0:y=x,当直线经过点A时,z取得最小值. ∴∴A(3,3).∴zmin=3-3×3=-6.]9.如图1,一轮船从A点沿北偏东70°的方向行驶10海里至海岛B,又从B沿北偏东10°的方向行驶10海里至海岛C,若此轮船从A点直接沿直线行驶至海岛C,则此船行驶方向与距离分别为()图1A.北偏东60°;10B.北偏东40°;10C.北偏东30°;10D.北偏东20°;10B[由已知得在△ABC中,∠ABC=180°-70°+10°=120°,AB=BC=10,故∠BAC=30°,所以从A到C的航向为北偏东70°-30°=40°,由余弦定理得AC2=AB2+BC2-2AB·BCcos∠ABC=102+102-2×10×10=300,所以AC=10.]10.当x>0时,不等式x2-mx+9>0恒成立,则实数m的取值范围是()【导学号:91432400】A.(-∞,6)B.(-∞,6]C.[6,+∞)D.(6,+∞)A[由题意得:当x>0时,mx0),则有x+≥2=6,当且仅当x=,即x=3时,等号成立.则实数m的取值范围是m<6.]11.若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+4D[由log4(3a+4b)=log2,得log2(3a+4b)=log2(ab),所以3a+4b=ab,即+=1.所以a+b=(a+b)=++7≥4+7,当且仅当=,即a=2+4,b=3+2时取等号,故选D.]12.已知x,y满足约束条件若z=ax+y的最大值为4,则a=()【导学号:91432401】A.3B.2C.-2D.-3B[画出不等式组表示的平面区域如图阴影部分所示,若z=ax+y的最大值为4,则最优解为x=1,y=1或x=2,y=0,经检验x=2,y=0符合题意,∴2a+0=4,此时a=2,故选B.]二、填空题(每小题5分,共20分,把答案填在题中横线上)13.若实数x,y满足xy=1,则x2+2y2的最小值为________.2[因为实数x,y满足xy=1,所以x2+2y2≥2=2=2,当且仅当x2=2y2且xy=1,即x2=2y2=时等号成立,故x2+2y2的最小值为2.]14.已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.【导学号:91432402】15[由于三边长构成公差为4的等差数列,故可设三边长分别为x-4,x,x+4.由一个内角为120°,知其必是最长边x+4所对的角.由余弦定理得,(x+4)2=x2+(x-4)2-2x(x-4)·cos120°,∴2x2-20x=0,∴x=0(...