山东省聊城市2018届高三数学下学期一模考试试题文第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则()A.B.C.D.2.设复数,则()A.4B.2C.D.13.设等差数列的前项和为,若,,则数列的公差为()A.2B.3C.4D.54.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是()A.B.C.D.5.设等比数列的各项均为正数,其前项和为,则“”是“数列是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线与抛物线:相交于,两点,若线段的中点为,则直线的方程为()A.B.C.D.7.已知函数,不等式的解集为()A.B.C.D.8.已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为()A.2B.4C.6D.89.执行如图所示的程序框图,若输出的结果为1.5,则输入的值应为()A.4.5B.6C.7.5D.910.在中,边上的中线的长为2,,则()A.1B.2C.-2D.-111.如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等腰直角三角形,若该几何体的各个顶点都在同一个球面上,则这个球的体积与该几何体的体积的比为()A.B.C.D.12.已知函数恰有3个零点,则实数的取值范围为()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.设,满足约束条件,则的最大值为.14.已知数列的前项和公式为,若,则数列的前项和.15.已知,,,则的最小值为.16.若函数在开区间内,既有最大值又有最小值,则正实数的取值范围为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)已知,的面积为,求的周长.18.为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:大棚面积(亩)4.55.05.56.06.57.07.5年利润(万元)677.48.18.99.611.1由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且与有很强的线性相关关系.(Ⅰ)求关于的线性回归方程;(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?参考数据:,.参考公式:,.19.如图,四棱锥中,为等边三角形,且平面平面,,,.(Ⅰ)证明:;(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.20.已知圆经过椭圆:的两个焦点和两个顶点,点,,是椭圆上的两点,它们在轴两侧,且的平分线在轴上,.(Ⅰ)求椭圆的方程;(Ⅱ)证明:直线过定点.21.已知函数(,且).(Ⅰ)求函数的单调区间;(Ⅱ)求函数在上的最大值.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(Ⅰ)写出圆的参数方程和直线的直角坐标方程;(Ⅱ)设直线与轴和轴的交点分别为、,为圆上的任意一点,求的取值范围.23.选修4-5:不等式选讲已知函数,.(Ⅰ)若对于任意,都满足,求的值;(Ⅱ)若存在,使得成立,求实数的取值范围.答案一、选择题1-5:ACBDC6-10:DADBC11、12:CA二、填空题13.414.15.16.三、解答题17.解:(Ⅰ)由及正弦定理得,,,∴,又 ,∴.又 ,∴.(Ⅱ)由,,根据余弦定理得,由的面积...