2014-2015学年江苏省南通一中高三(上)段考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.设集合,B={a},若B⊆A,则实数a的值为.2.设复数z满足zi=1+2i(i为虚数单位),则z的模为.3.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值范围为.4.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的.5.函数f(x)=x﹣lnx的单调减区间为.6.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如右图所示,则f(x)的函数解析式为.7.已知函数f(x)的导数f′(x)=a(x+1)(x﹣a),若f(x)在x=a处取到极大值,则a的取值范围是.8.已知实数x,y满足则x2+y2﹣2x的最小值是.9.设等比数列{an}的前n项和为Sn(n∈N*).若S3,S9,S6成等差数列,则的值是.10.设P为函数图象上异于原点的动点,且该图象在点P处的切线的倾斜角为θ,则θ的取值范围是.11.在直角三角形ABC中,∠ACB=90°,AC=BC=2,点P是斜边AB上的一个三等分点,则=.112.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是.13.已知直线y=ax+2与圆x2+y2+2x﹣3=0相交于A、B两点,点P(x0,y0)在直线y=2x上,且PA=PB,则x0的取值范围为.14.给出定义:若x∈〔m﹣,m+],(m∈z),则m叫做实数x的“亲密函数”,记作{x}=m,在此基础上给出下列函数f(x)=|x﹣{x}|的四个命题:①函数y=f(x)在x∈(0,1)上是增函数;②函数y=f(x)是周期函数,最小正周期为1;③函数y=f(x)的图象关于直线x=(k∈Z)对称;④当x∈(0,2]时,函数g(x)=f(x)﹣lnx有两个零点其中正确命题的序号是.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.设命题p:关于x的不等式1﹣a•2x≥0在x∈(﹣∞,0]上恒成立;命题q:函数y=lg(ax2﹣x+a)的定义域是实数集R.如果命题p和q有且仅有一个正确,求实数a的取值范围.16.已知△ABC中,a,b,c分别为角A,B,C的对边,sin(2C﹣)=,且a2+b2<c2.(1)求角C的大小;(2)求.17.如图,有一块边长为1(百米)的正方形区域ABCD,在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上),设∠PAB=θ,tanθ=t.(1)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值.(2)问探照灯照射在正方形ABCD内部区域的面积S至多为多少(平方百米)?18.若半径为r的圆C:x2+y2+Dx+Ey+F=0的圆心C到直线l:Dx+Ey+F=0的距离为d,其中D2+E2=F2,且F>0.2(1)求F的范围;(2)求证:d2﹣r2为定值;(3)是否存在定圆M,使得圆M既与直线l相切又与圆C相离?若存在,请求出定圆M的方程,并给出证明;若不存在,请说明理由.19.已知函数f(x)=mx2﹣x+lnx.(1)当m=﹣1时,求f(x)的最大值;(2)若在函数f(x)的定义域内存在区间D,使得该函数在区间D上为减函数,求m的取值范围;(3)当m>0时,若曲线C:y=f(x)在点x=1处的切线l与C有且只有一个公共点,求m的值.20.在数列{an}中,a1=1,且对任意的k∈N*,a2k﹣1,a2k,a2k+1成等比数列,其公比为qk.(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k﹣1;(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=.①求证:{bk}成等差数列,并指出其公差;②若d1=2,试求数列{dk}的前k项的和Dk.32014-2015学年江苏省南通一中高三(上)段考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.设集合,B={a},若B⊆A,则实数a的值为0.考点:集合的包含关系判断及应用.专题:阅读型.分析:根据集合关系,确定元素满足的条件,再求解.解答:解: B⊆A,∴a=≠1⇒a=0.故答案是0点评:本题考查集合中参数的确定.要注意验证集合中元素的互异性.2.设复数z满足zi=1+2i(i为虚数单位),则z的模为.考点:复数求模.专题:计算题.分析:根据所给的关于复数的等式,写出复数z的表达式,再进行复数的除法运算,分子和分母同乘以分母的共轭复数,得到结果,然后求出复...