一,教学分析方面从以下五个方面来进行说明:1、教学内容;2、教学内容的地位作用;3、教学目标;4、教学重点难点;5、教学方法与教学手段的选择。本节课是新人教B版必修一第二章函数2.1.3函数单调性的第一节课,该课主要学习增函数减函数的概念,初步了解证明函数单调性的一般步骤,并利用函数单调性的定义会判断证明一些简单的函数单调性的问题。通过上述活动,加深对函数本身的认识。二,教学内容地位与作用从以下四个方面做说明。刚才王老师已经说过,函数在高中数学当中是一个核心的内容。20世纪初,德国的数学家克莱因曾经这样说过,他认为函数的概念应该成为数学教育的灵魂,以函数概念为中心,将全部数学教材集中在它周围进行充分的综合。在高中课程当中函数与方程、数列、不等式、线性规划、算法、导数一起应用,包括概率统计中的随机变量等,以及选修系列三四中的大部分专题内容等都有密切的联系。而函数的性质是研究函数的基石,函数的单调性是函数的第一个性质,也是函数最重要的性质之一,他刻划了当自变量变化时,应变量变化的趋势,函数的单调性是函数学习中第一个用数学符号语言刻划的概念,为进一步学习函数的其他性质提供了方法依据。函数的单调性既是学生学过函数概念的延续和拓展,又是后续研究质指、对、幂和三角函数等单调性的基础,此外在比较数的大小,确定极值等函数定性分析,以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。此外,从方法论的角度分析,本节教学过程当中,还渗透了探索发展、数形结合、归纳类比、转化等数学思想。利用定义法证明函数单调性的过程中,算法的思想提前渗透,在强调对单调性概念中的“任意”理解的同时,为后面逻辑用语中的全称量词和存在性量词的深入理解提前做了铺垫。这是函数单调性的结构图。对函数单调性内容的分析,我认为学生的认知困难主要有两个方面:1、用准确的数学符号语言刻划图形的上升与下降,这种由形到数的反映,从直观到抽象的转变,对高一的学生是比较困难的。2、单调性的证明是学生在函数内容中首次接触到代数论证能力,而学生在代数方面的推理论证能力是比较薄弱的,根据以上的分析和教学大纲的要求,确定了本节课的教学目标,重点和难点。一,知识与技能方面,使学生从形和数两方面理解函数单调性的概念,初步掌握利用图象各定义判断证明函数单调性的方法。二,过程与方法,从生活实际和学生所学知识出发,引导学生自主探索函数单调性的概念,通过应用函数图象和单调性的定义,解决简单函数单调性问题,渗透数形结合的思想方法,培养学生观察归纳抽象类比的能力和语言表达能力,通过对函数单调性的证明,提高学生的论证推理能力。三,情感态度价值观。在整个过程中,着重让学生体验到由具体到抽象,从特殊到一般,感性到理性的认知过程,不断地探索学生创新求知的精神。四,教学重点,函数单调性的概念这是第一,二是运用函数单调性的定义判断证明一些函数的单调性。教学难点,函数单调性概念的知识形成,二是利用函数图形,单调性的定义判断和证明函数的单调性。教学方法和教学手段的选择方面,本节课由于是函数单调性的起始课,所以采用教师启发引导,学生自主探究学习的教学方法。通过创设情境引导学生探究,师生交流,最终形成概念,获得方法。过程当中借助于多媒体和几何画板来辅助教学,提高学生对所学概念的理解和认识。在本节课当中,为了实现教学目标,突出重点和难点,教学上采取了以下措施。一,在概念的探索阶段,让学生经历从直观到抽象,特殊到一般,感性到理性的认知过程,完成对函数单调性定义的三次认识,第一次认识是通过图象让学生感受到上升和下降,从函数的角度就是在某一个区间Y随着X增大而增大,或者是Y随着X增大而减少,这是对函数单调性的第一次认识;第二次认识是用数学符号语言来刻划在某一个区间上Y随着X增大而增大,或者Y随着X增大而减少,给出函数,增函数,减函数的定义,完成函数单调性的第二次认识;第三次认识是通过判断以及利用函数单调性的定义来证明单调性,加深学生对函数单调性的认识和理解,完成三次认识。使...